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Introduction Introducing examples

Introduction : different problems
Identify breakpoints in DNA profiles of patients

Early detection of biological threats
based on fluorescence analysis
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Introduction Introducing examples

Introduction : different problems

Detect novel pixels in a image

Reference image New image Detected new pixels
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Introduction Introducing examples

Introduction : different problems

Guided robust discovery

max TPR s.t. FPR ≤ qTPR (q � 1 : confidence level)

vs
Possible positives (label y =?) Reliable Negatives (label y = −1)

Application

Matching spectrum with
peptides (pieces of proteins)

Fake spectra are well known
(randomly generated)

True spectra are conjectured

Assume q = 0.01 and n+ = n−

Expecting TP = 1000→ FP ≤ 10
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Introduction Tentative categorization of the problems

Tentative taxonomy

       Samples
(structured data)

(Nominal samples)

Labels y = 1 available

Novelty detection

Clustering (profiling)

Change Detection

No label available

Regression

Performance measures
- True detection rate
- False detection rate

Performance measures
- True  detection rate
- False detection rate
- (Early) change "time"

Classification

Labels y=1 and 
few -1 available

False discovery

Performance measures
- True detection rate
- False detection rate
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Introduction Tentative categorization of the problems

Methodology

Taxonomies of detection approaches
Homogeneity test based
Non-parametric modeling
Offline (batch) or online decisions

Focus of this talk
One-class SVM for novelty and change detection
Classification approach for false discovery
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Kernel based approaches One-Class SVM

Kerne- based approaches : one-class SVM Smola and Schölkopf [1998]

Minimum enclosing ball problem : Support vector data description (SVDD)
Given N points, {xi ∈ Rd}Ni=1, find

min
R∈R,c∈Rd

R2

s.t. ‖xi − c‖2 ≤ R2, ∀i
the radius

Rewritting SVDD

min
ρ∈R,c∈Rd

1
2
‖c‖2 − ρ

s.t. c>xi ≥ ρ+ ‖xi‖2, ∀i

with ρ = 1
2 (‖c‖2 − R2)

Linear OC-SVM
is recovered if ‖xi‖2 = constant

min
ρ∈R,c∈Rd

1
2
‖c‖2 − ρ′

s.t. c>xi ≥ ρ′, ∀i

→ OC-SVM is a particular case of SVDD
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Kernel based approaches One-Class SVM

Illustration : the sphere and the hyperplane

0

c

SVDD and OCSVM when ∀i = 1,N, ‖xi‖2 = 1

‖xi − c‖2 ≤ R2 ⇔ c>xi ≥ ρ
"Belonging to the ball" ⇔ "being above" an hyperplane
‖xi‖2 = 1 ⇔ samples xi lie on a sphere
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Kernel based approaches One-Class SVM

Dealing with outliers and non-linear case

Outliers : allow a proportion of reference samples to be out of the enclosing ball

the slack min
R,c,ξ

R2 + µ
∑N

i=1 ξi

s.t. ‖xi − c‖2 ≤ R2 + ξi , i = 1, . . . ,N
and ξi ≥ 0, i = 1, . . . ,N
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Kernel based approaches One-Class SVM

Dealing with outliers and non-linear case

the slack min
R,c,ξ

R2 + µ
∑N

i=1 ξi

s.t. ‖xi − c‖2 ≤ R2 + ξi , i = 1, . . . ,N
and ξi ≥ 0, i = 1, . . . ,N

Handle non-linear case: use kernel

Definition (Kernel)

A function of two variable k(x, x′) with values in R, symmetric positive

Linear kernel: k(x, x) = x>z

Gaussian kernel k(x, z) = exp(−‖x−z‖2
b )
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Kernel based approaches One-Class SVM

Dealing with outliers and non-linear case

the slack min
R,c,ξ

R2 + µ
∑N

i=1 ξi

s.t. ‖xi − c‖2 ≤ R2 + ξi , i = 1, . . . ,N
and ξi ≥ 0, i = 1, . . . ,N

Handle non-linear case: use kernel
Nonlinear mapping:

Rd −→ H
c −→ f (•)
xi −→ k(xi , •)

‖xi − c‖2Rd ≤ R2 −→ ‖k(xi , •)− f (•)‖2H ≤ R2

OC-SVM ≡ SVDD with translation invariant kernel with k(xi , xi ) = constant
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Kernel based approaches Application to novelty and change detection

Applications

Novelty detection
Change detection
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Kernel based approaches Application to novelty and change detection

Novelty detection

Recall k(x, x) = ‖k(x, •)‖2H = constant←→ data lie on a sphere

W

O

Samples

Radius = 1

Outlier

S

Hyperplane

Novelty detection

Learn the hyperplane using (reference) training data
New samples: deemed novel if below the hyperplane
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Kernel based approaches Application to novelty and change detection

Novelty detection

Pros

Avoid density estimation of nominal data

Kernel OC-SVM estimates the distribution level set {x ∈ Rd | P(x) ≥ ρ}

Can handle vectorial or non-vectorial data (graphs, sequences. . . )

Benefit from huge data

Cons

Complexity of the underlying optimization problem

Choice of the kernel parameter(s) and hyper-parameter µ

Application domains (see for instance Pimentel et al. [2014])

Electronics IT security, industrial system surveillance

Medical diagnosis

Image processing, text mining, speech recognition . . .G. GASSO (LITIS, EA 4108) Change Detection May 10, 2016 11 / 22



Kernel based approaches Application to novelty and change detection

Change detection: principle

H0 : {x1, · · · , xN} ∼ P1

H1 : there exists θ such that {x1, · · · , xθ} ∼ P1 and {xθ+1, · · · , xN} ∼ P2

1 Nt

Issues

Find test statistic St

Find threshold γ in order to maximize probability of detection P(St ≥ γ|H1)
for a fixed false alarm rate P(St < γ|H0) = α

Test : Decide a change occurs if there is 1 < t < N such that St > γ
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Kernel based approaches Application to novelty and change detection

Change detection with OC-SVM Desobry et al. [2006]

Learn two OC-SVM on sets X1 = {x1, · · · , xt} and X2 = {xt+1, · · · , xN}

→ test for homogeneity of their level sets
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Kernel based approaches Application to novelty and change detection

Change detection with OC-SVM Desobry et al. [2006]

Learn two OC-SVM on sets X1 = {x1, · · · , xt} and X2 = {xt+1, · · · , xN}
→ test for homogeneity of their level sets

Change detection

Based on inter-region/intra-region ratio of the level sets

Decide a change (sets X1 and X2 are statistically different) if

St =
ū1u2

ū1p1 + ū2p2
> γ
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Kernel based approaches Application to novelty and change detection

Change detection with OC-SVM Desobry et al. [2006]
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Kernel based approaches Application to novelty and change detection

Related method: kernel Fisher ratio

Sets: X1 = {x1, · · · , xt} and X2 = {xt+1, · · · , xN}

Mapping: xi −→ k(xi , •)

Change detection statistics Harchaoui et al. [2009a,b]
Intuition: maximize the separation of sets X1 and X2

Statistics : St ∝ ‖(Σ + λI)−1/2(µ1 − µ2)‖2H

µj : mean vector of Xj in H

Σ covariance operator defined as Σ ∝ βΣ1 + (1− β)Σ2
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Kernel based approaches Application to novelty and change detection

Change detection using kernel approach

Pros

Same as for novelty detection

Cons

Computation time of the statistics

Choice of the kernel parameter(s)

Setting the threshold

Applications

Signals, videos segmentation

Bscan images, remote sensing images . . .
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Classification approach

Classification approach

Controlling false discovery
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Classification approach

Classification approach

Controlling false discovery Gasso et al. [2011]

min
f

Ω(f ) + λ FNR(f ) s.t. FPR(f ) ≤ q(1− FNR(f )) (q � 1 : confidence level)

vs
Possible positives (label y =?) Reliable Negatives (label y = −1)
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Classification approach

Classification approach

Controlling false discovery Gasso et al. [2011]

min
f

Ω(f ) + λ FNR(f ) s.t. FPR(f ) ≤ q(1− FNR(f )) (q � 1 : confidence level)

Estimation of probabilities of error

Data set X+ = {(xi , yi = 1)}n+i=1 , X− = {(xi , yi = −1)}n−i=1

f : decision function to be learned

Empirical probability errors (0− 1 errors)

FNR(f ) =
1
n+

∑
i∈X+

If (xi )≤0, FPR(f ) =
1
n−

∑
i∈X−

If (xi )≥0

Using 0− 1 errors leads to NP hard problem
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Classification approach

Classification approach

Dealing with the probabilities of errors
Non-convex approximation of the 0-1 errors

ˆFPR(f )=
1
n+

∑
i∈X+

`
(
yi f (xi )

)
, ˆFNR(f )=

1
n−

∑
i∈X−

`
(
yi f (xi )

)
.
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Classification approach

Classification approach

Proposed Algorithms

Kernel machine (SVM)
Ramp loss approximation
`(z) = max

{
0, 1

2 (1− z)
}
−max

{
0, − 1

2 (1 + z)
}

Remark: non-convex and non-differentiable

Batch learning for non-linear SVM: tool = DC programming (Tao and
An [1998], Gasso et al. [2009])
Online learning for linear SVM (large scale datasets): tool = stochastic
gradient

Deep network
Sigmoid loss approximation `(z) = 1

1+ez

Online learning with stochastic gradient
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Classification approach

Dealing with the non-convexity: elements of the solution
Decompose the loss as the difference of two convex functions

`(z) = max
¶
0, 1

2 (1− z)
©
−max

¶
0, −1

2 (1 + z)
©

= `1(z)− `2(z)
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J
1
(z)

−J
2
(z)

Principle: successive convex relaxations
At each iteration t, define the convex majorization function

Jcvx(f ) = J1(f )− J2(ft)− 〈f − ft ,αt〉 with αt ∈ ∂J2(ft)

Next solution: ft+1 = argminf Jcvx(f )
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Classification approach

Performance evaluation: q-value

Setup

Peptides-spectrum matching (PSM) verification
Goal: identify consistently true positive matchings
Models investigated : non-linear SVM (qSVMOpt), deep network
(qNNOpt)

q qRanker qSVMOpt qNNOpt
0.0025 4,449 4,947 5,005
0.01 5,462 5666 5,707
0.1 7,473 7,954 7,491

Table: Number of true positives correctly identified (over 34,852).
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Classification approach

Classification approach
Pros

Benefit from labeled data

Grounded in well known empirical risk minimization

Extensions to Neyman-Pearson classification (learning under probability
constraint on the false alarm)

Cons

Non-convex optimization problems

Dealing with probability constraints

Applications

Bioinformatics

Network surveillance (Distributed deni of service)

Text mining
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Conclusion

Conclusion: related work of the team

Non-convex optimization
Learning with probability constraints

Robust (to outliers) SVDD

Metric learning
Choice of the kernel in SVDD

Optimal transport to learn adapted metric to the data

Exploit manifold information for change detection

Early change detection
Classification based detection using incomplete sequence
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Conclusion
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