Multiple kernel, multi-task learning for BCI applications

G. Gasso With A. Rakotomamonjy, R. Flamary

NEC Labs Princeton

05/26/2009

Gasso (NEC Labs)

Multiple kernel, multi-task learning for B(

05/26/2009 1 / 22

Gasso (NEC Labs)

1 Non-convex multi-task learning

Multiple kernel, multi-task learning for B

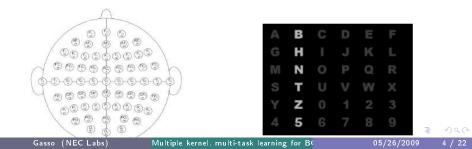
BCI Application

- Brain computer interface
- Recorded P300 Speller Brain Signals
- Characteristics : appearance of a deflection in the EEG signals 300*ms* (P300) after submitting a patient to a stimulus (visual stimulus)
- This deflection corresponds to an evoked potential (P300) to be detected

BCI Applications

Acquisition sytem

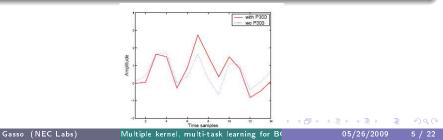
- Intensification of row or column of the matrix to spell a letter
- If a row or column containing the target letter is illuminated, a P300 potential is activated
- To recognize a letter, 12 intensifications are done
- To make the recognition reliable, this is repeated 15 times for a letter
- Spelling system consists of 64 EEG channels



BCI Applications

Dataset

- Different sessions was performed (each session the patient has to recognize a word)
- For one acquisition session, the patient is asked to spell a word of 3 to 5 characters
- 540 to 900 blocks of EEG signals recorded accordingly ($12 \times 15 = 180$ blocks of EEG per character)
- After processing, each EEG is transformed into 14 time frames vector \implies 14 \times 84 = 896 features vector for one intensification



Problem setup

- Identify positive signals (with P300) from negative signals
- Select the useful channels or variables
- Handle the variability of the signals over different sessions
- Approach : consider each acquisition session as a task, perform a multi-task learning

Paradigm

• Assume T classification tasks with T datasets

$$\mathcal{D}_t = \left\{ \left(x_i^t, y_i^t \right) \right\}_{i=1,\cdots,n_t}$$

$$x_i \in \mathcal{X}, \qquad y_i \in \{-1, 1\}, \qquad t = 1, \cdots, T$$

- Tasks are considered similar enough or related in a certain sense
- Aim : learn the decision functions $f_t(x), t = 1, \cdots, T$ in a joint manner
- Tasks share a common subset of relevant features
- Way to ensure this constraint? Use adequate regularization that favors joint features sparsity pattern across tasks
- For BCI application, the goal is to identify the most important features (from a session to another one)

05/26/2009 7 / 2

Formulation

Consider SVM classifier

$$\min_{f_1,\cdots,f_T} \quad C \cdot \sum_{t=1}^T \sum_{i \in \mathcal{D}_t} L(f_t(x_i^t), y_i^t) + \Omega(f_1, \cdots, f_T) \qquad (1)$$

C : regularization parameter

 \mathcal{D}_t and $f_t(x)$: dataset and decision function related to task t $L(y, f(x)) = \max(0, 1 - yf(x))$: hinge loss function $\Omega(f_1, \dots, f_T)$: joint sparsity regularizer

• We suppose the decision functions $f_t(x)$ defined as a combination of elementary functions defined over different sets of features \implies We adopt a multiple kernel formulation

Multi-task Learning (MTL)

Multi-kernel formulation : simple case

- Suppose we have only one task
- Let suppose three kernel spaces \mathcal{H}_1 , \mathcal{H}_1 and \mathcal{H}_3 defined by kernels $k_1(x,z)$, $k_2(x,z)$ and $k_3(x,z)$
- A decision function f(x) takes the form

$$f(x) = f_1(x) + f_2(x) + f_3(x) + b$$
 with $f_m \in \mathcal{H}_m$

- Example : $f_m(x) = \langle w_m, \phi_m(x) \rangle$ with $\phi_m(x)$ the mapping function
- Each kernel could be defined over a set of features according to some priori knowledge
- Regularizer

$$\Omega(f) = \frac{1}{2} \sum_{m=1}^{3} \|f_m\|_{\mathcal{H}_m} \quad \text{or} \quad \Omega(f) = \frac{1}{2} \left(\sum_{m=1}^{3} \|f_m\|_{\mathcal{H}_m} \right)^2$$

05/26/2009

9 / 22

Gasso (NEC Labs)

Multiple kernel, multi-task learning for B(

Multi-task Learning (MTL)

Multi-kernel Learning extended to MTL

- Three kernel spaces \mathcal{H}_{m} , $m=1,\cdots,3$ and four tasks with functions $f_t(x), \ t=1,\cdots,4$
- The decision function $f_t(x)$ of task t takes the form

$$f_t(x) = f_{t,1}(x) + f_{t,2}(x) + f_{t,3}(x) + b_t$$
 with $f_{t,m} \in \mathcal{H}_m$

Regularizer

$$\Omega(f_1, \cdots, f_T) = \frac{1}{2} \sum_{m=1}^{3} \left(\sum_{t=1}^{4} \|f_{t,m}\|_{\mathcal{H}_m}^2 \right)^{1/2}$$

• The term $||f_{\cdot,m}|| = \left(\sum_{t=1}^{4} ||f_{t,m}||_{\mathcal{H}_m}^2\right)^{1/2}$ measures the importance of kernel k_m across the tasks. If the kernel does not influence the decision functions f_t , we want the term $||f_{\cdot,m}||$ small or null

10 / 22

• Equivalent to $\ell_1 - \ell_2$ penalization (mixed-norm regularization) Gasso (NEC Labs) Multiple kernel, multi-task learning for B⁽¹⁾ 05/26/2009

General problem

Gathering all elements

$$\min_{f_1, \dots, f_T} \quad C \cdot \sum_{t=1}^T \sum_{i \in \mathcal{D}_t} L(f_t(x_i^t), y_i^t) + \frac{1}{2} \sum_{m=1}^M \|f_{i,m}\|$$

with

$$\|f_{\cdot,m}\| = \left(\sum_{t=1}^{T} \|f_{t,m}\|_{\mathcal{H}_m}^2\right)^{1/2}$$

- We retrieve a multiple kernel formulation over $\|f_{\cdot,m}\|$
- Any multiple kernel solver can be used to address the learning problem

Variational approach

$$\begin{array}{ll} \min_{f_1, \cdots, f_T, \mathbf{d}} & C \sum_{t=1}^T \sum_{i \in \mathcal{D}} L(f_t(x_i^t), y_i^t) + \sum_{m=1}^M \frac{\|f_{\cdot, m}\|^2}{d_m} \\ \text{s.t} & \sum_m d_m = 1, \quad d_m \ge 0 \quad \forall m \end{array}$$

Variables d_m : extra-parameters. The values of d_m stress the importance of the corresponding kernels k_m in the solution. $d_m = 0$ means kernel k_m discarded from the solution.

Rearranging the optimization problem

• Using the fact that $\|f_{,m}\|^2 = \sum_{t=1}^T \|f_{t,m}\|^2_{\mathcal{H}_m}$, we obtain

$$\begin{array}{ll} \min_{\mathbf{d}} & J(\mathbf{d}) = \sum_{t} J_{t}(\mathbf{d}) \\ \text{s.t} & \sum_{m} d_{m} = 1, \quad d_{m} \ge 0 \quad \forall m \end{array}$$

with $J_t(\mathbf{d}) = \min_{f_t} C \sum_{i \in \mathbf{D}_t} L(f_t(x_i^t), y_i^t) + \sum_m \frac{\|f_{t,m}\|^2}{d_m}$

Solver : two-level optimization

Fix d and solve for each task

$$\min_{f_t} C \sum_{i \in \mathbf{D}_t} L(f_t(x_i^t), y_i^t) + \sum_m \frac{\|f_{t,m}\|^2}{d_m}$$

• Recall that
$$f_t(x) = \sum_m f_{t,m}(x) + b_t$$

• Each function f_t is retrieved from the solution of an SVM defined over kernel $K(x, z) = \sum_m d_m k_m(x, z)$

$$\begin{array}{ll} \max_{\alpha_{i}^{t}} & -\frac{1}{2} \sum_{i,j} \alpha_{i}^{t} \alpha_{j}^{t} y_{i}^{t} y_{j}^{t} \sum_{m} d_{m} \mathcal{K}_{m}(x_{i}^{t}, x_{j}^{t}) + \sum_{i} \alpha_{i}^{t} \\ \text{s.t.} & \sum_{i} \alpha_{i}^{t} y_{i}^{t} = 0, \quad \text{and} \quad 0 \leq \alpha_{i}^{t} \leq \mathcal{C} \quad \forall i \end{array}$$

≥ Knowing the solutions f_t , we can update the parameters d_m by a projected gradient algorithm. The gradient is simply $\sum_t \nabla_{\mathbf{d}} J_t(\mathbf{d})$

Gasso (NEC Labs)

05/26/2009 13/22

Application on BCI

- 896 variables \implies 896 kernels
- Tasks : 4 acquisition sessions
- 1/3 data used for training

Algorithms	AUC	# variables
$MTL_{\ell_1-\ell_2}$	85.72 ± 1.8	192 ± 11
FullMKL	86.17 ± 1.8	214 ± 12
SepMKL	84.15 ± 1.8	272 ± 13

High AUC means good algorithm

FullMKL : multiple kernel SVM trained on the entire available training set

SepMKL : tasks are trained separately (state of art)

Gasso (NEC Labs)

05/26/2009 14 / 22

Non-convex regularization

- Instead of the $\ell_1-\ell_2$ penalty, we consider a non-convex "pseudo-norm" $\ell_p-\ell_2$ penalty with 0 < p < 1
- Aim : emphasize the sparse behavior of the solution
- Proposed regularization closely related to the spirit of non-convex group lasso algorithms that was issued from consistency results of the convex group lasso
- Non-convex regularizer : Ω(f₁, · · · , f_T) = ∑_{m=1}^M g(||f_{·,m}||) with g(u) = u^p, 0 Remark : any other penalty function g(u) could be used as well

DC algorithm

- Assume the optimization problem $\min_{\theta} J(\theta)$ where J is a non-convex objective function
- Decompose $J(\theta)$ as a difference of two convex functions : $J(\theta) = J_1(\theta) - J_2(\theta)$
- Solve iteratively $\theta^{(i+1)} = \operatorname{argmin}_{\theta} J_1(\theta) \langle \nabla_{\theta} J_2(\theta^{(i)}), \theta \theta^{(i)} \rangle$ until convergence

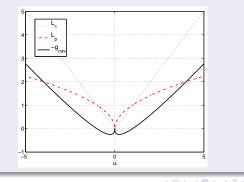
Handling non-convex joint sparsity regularizer

Application of DC principle

• The non-convex part is $\Omega(f_1, \cdots, f_T) = \sum_{m=1}^M g(\|f_{\cdot,m}\|)$ with

$$g(u) = u^p, \quad 0$$

• Decomposition : $g(u) = u - (u - u^p)$



Gasso (NEC Labs)

Multiple kernel, multi-task learning for BO

05/26/2009

17 / 22

Application of DC principle

$$\min_{f_1,\dots,f_T} \quad C \cdot \sum_{t=1}^T \sum_{i \in \mathcal{D}_t} L(f_t(x_i^t), y_i^t) + \frac{1}{2} \sum_{m=1}^M g\left(\|f_{\cdot,m}\| \right)$$

• Decomposition :
$$g(u) = u - (u - u^p)$$

It leads to

۲

$$J_{1} = C \sum_{t} \sum_{i \in \mathcal{D}_{t}} L(f_{t}(x_{i}^{t}), y_{i}^{t}) + \sum_{m} ||f_{\cdot,m}||$$
$$J_{2} = \sum_{m} (-||f_{\cdot,m}|| + ||f_{\cdot,m}||^{p})$$

Gasso (NEC Labs)

05/26/2009 18 / 22

Application of DC principle

• Applying the DC algorithm, the non-convex MTL optimization problem boils down to solve iteratively a reweigthed $\ell_1 - \ell_2$ multi-task problem

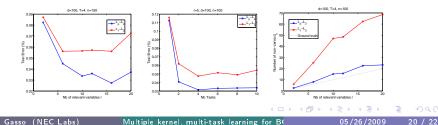
$$\begin{array}{ll} \min_{f_1, \cdots, f_T, \mathbf{d}} & C \sum_t \sum_{i \in \mathcal{D}_t} L(f_t(x_i^t), y_i^t) + \sum_m \beta_m^2 \frac{\|f_{\cdot, m}\|^2}{d_m} \\ \text{s.t} & \sum_m d_m = 1, \quad d_m \ge 0 \quad \forall m \end{array}$$

- At each iteration, the weights are given by $\beta_m = rac{p}{\|f_{\cdot,m}^{(p)}\|^{1-p}}$
- The optimization problem of each iteration can be cast into the convex MTL using kernel $k'_m(x,z) = \frac{k_m(x,z)}{\beta_m^2}$
- The iterative scheme is applied until convergence of the weigths β_m

05/26/2009 19/22

Toy problem

- T binary classification tasks with n samples $x \in \mathbb{R}^d$ for each task
- The classes follow gaussian distributions with means μ , $-\mu$ and random covariance matrix in \mathbb{R}^r where r is the number of relevant variables. The remaining d r variables are generated randomly and are considered as spurious variables
- Kernels : each dimension defined a kernel $k_m, \quad m=1,\cdots,d$



- 896 kernels
- 4 Tasks

Algorithms	AUC	# variables
$MTL_{\ell_1-\ell_2}$	85.72 ± 1.8	192 ± 11
FullMKL	86.17 ± 1.8	214 ± 12
SepMKL	84.15 ± 1.8	272 ± 13
$MTL_{\ell_p-\ell_2}$	86.37 ± 1.3	43 ± 6

For $MTL_{\ell_p-\ell_2}$, p=0.5

FullMKL : multiple kernel SVM trained on entire training set SepMKL : tasks are trained separately

• The recognition performances for $MTL_{\ell_p-\ell_2}$ are slightly improved with however an important reduction of the number of variables \implies few channels really needed

Gasso (NEC Labs)

05/26/2009 21/22

- MTL-MKL learning algorithm
- Yields sligth improvments on BCI data for one subject inter-session variability
- Extend its application to tackle inter-subject variabilities
- Test on other learning problems
- Speed-up the learning algorithm by considering an online version ?