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Illustration

Task: classification of defaults affecting wood’s pieces

Source domain (Pine): 2 classes with only RGB images
Label 1 Label 2

Target domain (Spruce): 3 classes, multi-view (RGB and scanner) images
Label 1 Label 2 Label 3
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Illustration

Task: image classification

Dmain adaptation?

I Differences in instances 6=⇒ difference in the predictions

I Transfer knowledge from previous domain to a new domain to
overcome the differences

I Domains are somehow related 2



Domain adaptation problem

Our context
I Source Domain: data are from the joint distribution Ps(x s , y s)

Target domain: data follow the distribution Pt(x t , y t)

I Ps and Pt are different but sufficiently related

Goal
Leverage on labeled source data to learn a classifier effective for
unlabeled target data

Use Optimal Transport to measure the domain relatedness 3



Summary of optimal transport



The origins of optimal transport

Problem [Monge, 1781]

I Move dirt from one place to another while minimizing the effort

I Find a mapping T between the two distributions of mass

I Optimize with respect to a given displacement cost c(x , z)
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Optimal transport: Monge formulation

0 20 40 60 80 100
x,y

Distributions
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y

Quadratic cost c(x, y) = |x y|2

c(20, y)
c(40, y)
c(60, y)

I Probability measures µs on Xs and µt on Xt and a cost function
c : Xs ×Xt → R+

I The [Monge, 1781] formulation seeks a mapping T : Xs → Xt

inf
T#µs=µt

∫
Xs

c(x ,T (x))µs(x)dx

I Non-convex problem, mapping does not exist in the general case

I Brenier [1991] proved existence and unicity of the Monge map for
c(x , z) = ‖x − z‖2 and distributions with densities
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Optimal transport - Kantorovitch relaxation

I The Kantorovitch formulation solves for the joint coupling

γ̂ = argminγ

∫
Xs×Xt

c(x s , x t)γ(x s , x t)dx sdx t ,

s.t. γ ∈ U = {γ ≥ 0 |
∫
Xt

γ(x s, x t)dx t = µs,

∫
Xs

γ(x s, x t)dx s = µt}

I γ: joint probability measure with marginals µs and µt
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Wasserstein distance

Wasserstein distance
W p

p (µs , µt) = min
γ∈U

∫
Xs×Xt

c(x s , x t)γ(x s , x t)dx sdx t

where c(x s , x t) = ‖x s − x t‖p

I Do not need the distribution to have overlapping supports

I Similar definition holds for discrete distributions (histograms,
empirical).
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The discrete distribution case

Source distribution µs =
∑ns

i=1 aiδxsi ,
∑

i ai = 1

Target one µt =
∑nt

j=1 bjδx tj ,
∑

j bj = 1

Problem
Measure the distance between µs and µt

I Find a joint probabilistic coupling γ

minγ∈U(µs,µt)〈C,γ〉F

C ∈ Rns×nt is the transportation cost matrix with entries c(x s
i , x

t
j )

I U(µs, µt) = {γ ∈ Rns×nt
+ |γ1nt = µs,γ

>1ns = µt}
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OT with discrete distributions

Discrete Optimal transport

minγ∈U(µs,µt)〈C,γ〉F

with U(µs, µt) = {γ ∈ Rns×nt
+ |γ1nt = µs,γ

>1ns = µt}

I Linear programming problem with solution in O(n3logn)
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OT with discrete distributions

Regularized OT

minγ∈U(µs,µt)〈C ,γ〉F + λΩ(γ)

I Generally use of convex regularization Ω(γ)

� Entropy regularization that leads to Sinkhorn iterations
� Quadratic, Group-lasso · · ·

I Better computation speed or enforce prior knowledge

� OT DA uses group-lasso to map source samples with the same
labels onto the same subset of target instances
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OT in ML applications



Generative modeling

Generative modeling as a problem of distribution matching

I Learn a model fθ that maps a random vector ξ to target space

I Distribution of the model output should be similar to the one of the
learning source samples

I Similarity as Wasserstein distance sense [Arjovsky et al., 2017]

minfθ W
(
{x s

i }
ns
i=1 , {fθ(ξj)}ntj=1

)
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Missing data imputation

Impute missing data

I Impute missing data so that to match distributions of imputed data
and the full ones [Muzellec et al., 2020]

I Sinkhorn divergence is used to measure similarity
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Learning with mismatch in train and test sets

Domain adaptation

I Several ML applications do not fulfill the assumption Ptrain = Ptest

I Common objective: learn sample representation mapping function
g(·) and the prediction model h(·) so that the learned features of
train/test data match in the latent space

I Learning problem

min
h,g

1
ns

ns∑
i=1

L (h(g(x s
i )), y s

i ) + λW (Ptrain (g(x s)) ,Ptest

(
g(x t)

)
)
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Optimal transport and domain
adaptation



Domain adaptation problem

Recall the context

I Source Domain: data are from the joint distribution Ps(x s , y s)

I Target domain: data follow the distribution Pt(x t , y t)

I Classification task: Ys = {1, · · · ,K}

I Ps and Pt are different but sufficiently related
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Domain adaptation: common settings

Notations

Source data are labeled Ds = {(x s
i , y

s
i ) ∈ Xs × Ys}nsi=1

Target samples are unlabeled Dt = {x t
j ∈ Xt}ntj=1

Joint dis. Marginal dis. Conditional dis. Label dis.
Source Ps(x , y) Ps(x) Ps(y/x) Ps(y)

Target Pt(x , y) Pt(x) Pt(y/x) Pt(y)

Common assumptions

I Same instance and label spaces Xs = Xt and Ys = Yt

I Joint distributions are drifted Ps(x , y) 6= Pt(x , y)

� Covariate shift: Ps(x) 6= Pt(x) but Ps(y/x) ' Pt(y/x)

� Label shift: Ps(y) 6= Pt(y) but Ps(x/y) ' Pt(x/y)
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Domain adaptation: the goal

I Let D(·, ·) be a distance between distributions

I Assume L(·, ·) : Y × Y → R+ is a loss function

Learning problem

I Learn a function f (·) : X → Y that minimizes the risk on source
domain while aligning the source and target distributions

min
f

Rs(f ) + D(Ps ,Pt)

I Rs(f ) = E(x,y)∼Ps
L(y , f (x)) is the expected risk on source domain

Expected outcome
Such learned f adapts well to target domain

15



Empirical DA risk minimization

In practice

Model f (·) = h ◦ g(·) consists of

� a representation learning function g(·) : X → Z
� and a classifier h(·) : Z → Y

Regularized empirical risk minimization

min
h,g

1
ns

ns∑
i=1

L (h(g(x s
i )), y s

i ) + λD(Pg
s ,P

g
t ) + Ω(h, g)

I The distributions are aligned in the representation space Z

I Ω is a regularization term

I Problem usually solved using stochastic gradient descent
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Why does it work?

Bounding the target risk [Ben-David et al., 2010]

Rt(f ) ≤ Rs(f ) + D(Ps(x),Pt(x)) + α

I What we should care about: measure of distribution shift
D(Ps(x),Pt(x))

I What we expect: domain relatedness measured by
α = inff Rs(f ) + Rt(f )

Most DA strategies
I Choose f with good properties (to get α minimal)

I Minimize distribution discrepancy
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Some domain-invariant adaptation methods

Joint adaptation network [Long et al., 2017]

I Jointly align feature distributions across layers

I Based on kernel Maximum Mean Discrepancy [Gretton et al.,
2012] between layer activation distributions
D(Ps(x),Pt(x)) ≡ ‖mz(Ps)−mz(Pt)‖2H
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Some domain-invariant adaptation methods

Domain adversarial network [Ganin et al., 2016]

I Mapping source and target instances onto a domain-invariant latent
subspace

I Ensure good prediction on source domain

I Approach issued from the target risk bound
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Some domain-invariant adaptation methods

Optimal transport domain adaptation [Courty et al., 2016]

I Estimate a push-forward operator T between source and target
distributions

I Map source samples onto target domain

I Learn a classification function
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Application to acoustic scene classification (ASC)

Learning problem

I ASC: classify an audio recording into a
class (metro, bus...)

I Issue: different recording devices may
impede performances

I Goal: adapt the ASC system to account
for data recorded with different devices
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Application to acoustic scene classification (ASC)

I Source domain: device A

I Target one: devices B and C

Proposed approach [Olvera et al., 2022]
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Application to acoustic scene classification (ASC)

Classification accuracy
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Limitations of the classical DA methods

Causes of failure

I They learn a mapping function g such that the conditional
distributions are preserved (covariate shift)

Ps(y/g(x)) ' Pt(y/g(x))

I This amounts to align the marginal distributions Pg
s ' Pg

t

But what if

I the label distributions change across domains Ps(y) 6= Pt(y)?

⇒ Aligning marginals may not match class-conditionals

I the input spaces are not similar Xs 6= Xt?
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Optimal Transport for Conditional
Domain Matching and Label Shift



Illustration of domain-invariance breaking

I top/bottom panels: source/target domains

I left/right: before/after adaptation

Mismatch when aligning marginals

⇒ Class conditionals are mismatched
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Illustration of domain-invariance breaking

I top/bottom panels: source/target domains

I left/right: before/after adaptation

Mismatch induced by label shift Ps(y) 6= Pt(y)

⇒ source domain classes are mixed
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Generalized domain adaptation

Considered setting

I label shift: Ps(y = k) 6= Pt(y = k)

I class conditional shift: Ps(z/y = k) 6= Pt(z/y = k)

I z = g(x) is the latent space representation

Contributions

I learning framework that matches class-conditionals without labels in
target domain

I learn OT mapping between source and target class-conditionals

I estimate the class-proportion in target by modeling target samples
by a mixture of models (cluster assumption)
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Formulation

Goal

I given a labeled source dataset Ds = {(x s
i , y

s
i )}nsi=1 and unlabeled

target one Dt = {x t
j }

nt
j=1

I learn a latent representation mapping g : X → Z

I and a classifier h : Z → Y that performs well on target samples

Approach

I re-weighting scheme of source samples to deal with the label shift

I mapping class-conditionals i.e. Ps(g(x)/y = k) ' Pt(g(x)/y = k)
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Main theoretical results

Target risk bound
Assuming that Ps(y = k) > 0, Ps(z/y = k) > 0 for all class k and h is
K -Lipschitz and g is continuous, we have

Rt(f ) ≤ Rs(f )︸ ︷︷ ︸
source risk

+2K W1(Pg
s ,P

g
t )︸ ︷︷ ︸

alignment

+Ez∼Pg
t
|f gt (z)− f gs (z)|︸ ︷︷ ︸

can’t be estimated

+

1 + supk,z ω(z)Sk(z)︸ ︷︷ ︸
reweighting

Rt(h
? ◦ g)

I ω(z) =
Pt(y = k)

Ps(y = k)
, if z is of class k , is the label proportion ratio

I Sk(z) =
Pt(z/y = k)

Ps(z/y = k)
, class-conditional ratio

I and supk,z ω(z)Sk(z) ≥ 1 (the lower bound is attained when there
is no shift) 24



Generalized DA via a match and re-weight strategy

Derived learning problem

I Principle: to avoid label shift, we match the target marginal Pg
t with

the re-weighted source one P̃g
s =

∑K
k=1 Pt(y = k)︸ ︷︷ ︸

unknown

Ps(z/y = k)

I Hence, we solve the weighted problem

min
h,g

1
ns

ns∑
i=1

ωiL (h(g(x s
i )), y s

i ) + λW1(P̃g
s ,P

g
t ) + Ω(h, g)

with ωi =
Pt(y = yi )

Ps(y = yi )

I Notice: the procedure requires to estimate the unknown target
class proportion
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Estimate the target class proportion

The principle

I Given the target sample representations {z t
j = g(x t

j )}j , learn the
target marginal distribution as a mixture with K modes

Pg
t (z) =

K∑
k=1

αkp
t
k(z), αk > 0,

∑
k

αk = 1

I Use OT to find the permutation σ that aligns the source
class-conditionals {Ps(z/y = k)}Kk=1 with the target ones {pk}Kk=1

Target class
proportion
Pt(y = k) = σ(αk)
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Assumptions for correct class-conditional matching

Assumptions

I cluster assumption on the source domain

I Cyclical monotonicity between source and target class-conditionals

Examples of correct/incorrect geometrical arrangment
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Experimental evaluation

Baselines

I Source only

I Domain adversarial NN (DANN): no adaptation to label shift

Competitors that account for label shift

I WDβ : ω = 1/(1 + β) with β user-defined constant

I IW-WD: ω =
Pt

Ps
estimated assuming class-conditionals are equal

Datasets

I Evaluation on computer vision tasks (Digits, VisDA)
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Quantitative results

Balanced accuracy. The best performing method is indicated in bold
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Ablation studies

Estimation of target label proportion

I best performance is correlated to better label proportion estimation
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Ablation studies

Embedding visualisation

I left: before adaptation, right: after

I almost correct matching of class conditionals
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Partial OT and domain adaptation



Moving beyond class-conditional matching

What if

I the label distributions change Ps(y) 6= Pt(y)? X

I the input spaces are not similar Xs 6= Xt?

I the label spaces are different Ys 6= Yt? −→ Open set DA

Our approach

I Optimal transport as a measure of distribution discrepancy

I Open set DA: detect unknown target classes and map known class
instances

I Different input spaces: use Gromov-Wasserstein optimal transport
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Adaptation when input spaces differ

I Labeled source data Ds = {(x s
i , yi ) ∈ Xs × Ys}nsi=1

I Target samples are unlabeled Dt = {x t
j ∈ Xt}ntj=1

I Our setting

� Label spaces differ Ys 6= Yt
� Input instances belong to different spaces Xs 6= Xt

� Ex: multi-view data with some views absent across domains

Goal
Find a mapping accounting for different input spaces and target shift 32



Issues

I Classical OT deals with distributions
defined over the same metric space

minγ∈U(µs,µt)〈C ,γ〉F

I How to deal with Xs 6= Xt?

� Use a Gromov-Wasserstein optimal
transport

I How to deal with Ys 6= Yt?

� Optimize over the marginals
� or resort to partial transport of

probability mass
33



Gromov-Wasserstein optimal transport

I Measure distance between distributions with no common ground
space

I Based on pairwise distances in each space

I Invariant to rotation and translation of the samples
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Discrete Gromov-Wasserstein optimal transport

min
γ∈U(µs,µt)

J(γ) =
ns∑

i ,k=1

nt∑
j ,`=1

(C s
ik − C t

j`)
2γ ijγk`

with C s
ik = dXs (x

s
i , x

s
k) and C t

j` = dXt (x
t
j , x

t
` ) ground distances

I Non-convex problem

I Practical computation considers Gromov-Wasserstein optimal
transport with entropic regularization
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Partial Gromov-Wasserstein optimal transport

I How to deal with Ys 6= Yt?
� Avoid transferring all probability mass from source to target
� → Transport only a fraction of probability mass

Partial GW OT

min
γ∈Uu(µs,µt)

J(γ) =
ns∑

i ,k=1

nt∑
j ,`=1

(C s
ik−C t

j`)
2γ ijγk`

the set of coupling matrices is defined now as

Uu(µs, µt) = {γ ∈ Rns×nt
+ |γ1≤µs ,γ

>1≤µt , 1>n γ1 = β}

0 ≤ β ≤ min(‖µs‖1, ‖µt‖1): fraction of
probability mass to be transported
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Solving Partial Gromov-Wasserstein problem

Frank-Wolfe iterations

1. Compute a linear minimization oracle over the set Uu(µs, µt)

γ̃ ← argminγ∈Uu(µs,µt)〈∇γJ(γ(k)),γ〉

2. Find step size

η(k) ← argmaxη∈[0,1]J((1− η)γ(k) + ηγ̃)

3. Update the solution

γ(k+1) ← (1− η(k))γ(k) + η(k)γ̃

I The most difficult part is solving step 1

I Step 1 is a partial (Wasserstein) optimal transport
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Strategy for partial Wasserstein OT

(PW ) minγ〈M,γ〉,
s.t. γ ∈ U(µs, µt) = {γ ∈ Rns×nt

+ |γ1≤µs ,γ
>1≤µt , 1>n γ1 = β}

I Key element

� Turn the partial inequality constraints into equality ones
� Introduce dummy points that will receive the excess of mass
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Strategy for partial Wasserstein OT

Equivalent problem

minγ̃∈U(~µs,~µt)〈M̃, γ̃〉, U(~µs, ~µt) = {~γ ≥ 0, ~γ1 = ~µs, ~γ>1 = ~µt}

with M̃ =

[
M e>

e ∞

]
, µ̃s =

[
µs

‖µt‖1 − β

]
, µ̃t =

[
µt

‖µs‖1 − β

]

I Interpretation

� e = ξ1 is a vector such that ξ ≥ 1
2 maxi,j Mij

� Marginals µ̃s and µ̃t have the same mass ‖µs‖1 + ‖µt‖1 − β

I The new problem is a linear program solved with network flow solver

I Provably it provides the solution to (PW) problem
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Application to PU learning

Positive Unlabeled learning

I P = {x i}
np
i=1 set of positive samples with x ∼ p(x |y = 1)

I U = {xu
i }

nu
i=1 unlabeled set with

xu ∼ p(x) = βp(x |y = 1) + (1− β)p(x |y = −1)

I β = p(y = 1) true proportion of positives

Link with open set DA

I Identifying the target unseen class
amounts to PU learning

� P represents source samples
� U corresponds to target

samples with the unknown
class (negatives)
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Partial GW on Caltech data - same input space

Data set β(%) PU PUSB P-W P-GW
Original Mnist 10 89.3 82.8 99.1 96.3
Colored Mnist 10 87.0 80.0 86.5 96.5
Surf C→Surf C 10 89.3 89.4 82.3 86.4
Surf C→Surf A 10 87.7 85.6 82.2 87.2
Surf C→Surf W 10 84.4 80.5 80.8 89.0
Surf C→Surf D 10 82.0 83.2 80.2 94.2
Decaf C→Decaf C 10 93.9 94.8 83.8 85.8
Decaf C→Decaf A 10 80.5 82.2 83.8 88.6
Decaf C→Decaf W 10 82.4 83.8 87.0 90.8
Decaf C→Decaf D 10 82.6 83.6 84.8 95.2

I Datasets: Caltech 256 (C), Amazon (A), Webcam (W), DSLR (D)

I Methods: Vanilla PU [Du Plessis et al., 2014], PU with sampling
bias [Kato et al., 2019]

I Partial GW provides better classification accuracy even when source
space and target domains share the same input space
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Partial GW on Caltech data - different spaces

I Source Xs = Surf features → Target Xs = Decaf features[Donahue
et al., 2014]

I or source Xs = Decaf features → Target Xs = Surf features

Scenario *=C *=A *=W * = D
Surf C→ Decaf * 88.0 95.0 93.2 95.0
Decaf C→ Surf * 87.4 87.4 86.6 94.0

I Previous methods (PU, PUSB, Partial-W) do not apply

I Partial GW yields similar performances as in setting where Xs = Xt

→ Partial GW is able to leverage on the discriminative information
conveyed by intra-domain similarity matrices.
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Conclusion



Conclusion

I A framework that handles conditional and label shift in DA

I Joint estimation of label proportion and source/target mapping

I Theoretical guarantees under some geometrical assumptions in the
latent space

I A framework that accounts for DA applied on data in incomparable
spaces and with unknown classes
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