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General framework

Learning problem

Dataset S = {(xi , yi ) ∈ X × Y}ni=1 i.i.d. sampled

Goal: learn a functional relation f : X → Y

f belongs to space of functions H

Many learning problems come in the form

(P) min
f ∈ C

J(f , S) with J(f , S) = L(f , S) + λ Ω(f ), C ⊆ H

L: data fidelity cost, Ω: penalization term and λ ≥ 0
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General framework

Examples

(P) min
f ∈ C

J(f , S) with J(f , S) = L(f , S) + λ Ω(f ), C ⊆ H

SVM for binary classification

f : a non-linear function
Hinge loss based data fidelity cost

L(f , S) =
n∑

i=1

max(0, 1− yi f (xi ))

Smoothness penalization

Ω(f ) = ‖f ‖2H −2 −1 0 1 2 3
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General framework

Examples

(P) min
f ∈ C

J(f , S) with J(f , S) = L(f , S) + λ Ω(f ), C ⊆ H

Regression

f (x) = 〈w , φ(x)〉+ b
Least squares loss

L(f , S) =
n∑

i=1

(yi − f (xi ))2

Smoothness penalization
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Features of the learning problem

(P) min
f ∈ C

J(f , S) with J(f , S) = L(f , S) + λ Ω(f ), C ⊆ H

Convexity of Problem (P)
1 J is convex, and
2 Set C is convex

Convex loss function L
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Hinge Loss

Logistic Loss

Quadratic Loss

Non-convexity of (P)
1 Either J or C is non-convex

Non-Convex loss L
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0−1 Loss

Ramp Loss

Sigmoid Loss
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Features of the learning problem

(P) min
f ∈ C

J(f , S) with J(f , S) = L(f , S) + λ Ω(f ), C ⊆ H

Convexity of Problem (P)
1 J is convex, and
2 Set C is convex

Convex Penalty Ω
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Non-convexity of (P)
1 Either J or C is non-convex
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Features of the learning problem

(P) min
f ∈ C

J(f , S) with J(f , S) = L(f , S) + λ Ω(f ), C ⊆ H

Convexity of Problem (P)
1 J is convex, and
2 Set C is convex

Pros and Cons
Any local solution is globally
optimal
Efficient computation
Initialization does not matter

Non-convexity of (P)
1 Either J or C is non-convex

Pros and Cons
Difficult to solve
Find all local minima to get
global solution
Initialization really matters
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Features of the learning problem

(P) min
f ∈ C

J(f , S) with J(f , S) = L(f , S) + λ Ω(f ), C ⊆ H

Convexity of Problem (P)
1 J is convex, and
2 Set C is convex

Pros and Cons
Any local solution is globally
optimal
Efficient computation
Initialization does not matter

Non-convexity of (P)
1 Either J or C is non-convex

Pros and Cons
Difficult to solve
Find all local minima to get
global solution
Initialization really matters

Convexity of (P) is a blessing.
However non-convexity can pay off. Why to prefer it?
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Motivation (1)

Sparse representation (Compressive sensing)

Raw signals
Sparse Features

Dictionary D ∈ RN×d

N � d (more variables than
samples)
Signal X ∈ RN

Need of sparsity
computation
interpretation
accuracy

Goal
Find a sparse decomposition of
signal X ∈ RN over D
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Motivation (1)

minα∈Rd ||X − Dα||2 + λΩ(α)
Ω(α): sparsity inducing penalisation

Non-convex formulation
1 Count: Ω(α) =

∑d
j=1 Iαj 6=0

2 A Concave relaxation
Ω(α) =

∑d
j=1 |αj |p, 0 < p < 1

Convex relaxation
1 `1-norm Ω(α) = ‖α‖1
2 `2-norm Ω(α) = ‖α‖22
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 penalty, 0 < p < 1 Convex formulations lead

to biased estimation of α
Concave relaxation: better
approximation of ‖ · ‖0
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Motivation (2)

Dynamical system modelling under stability constraint

Input
u(t)

Black-Box
modelM

Output
ŷ(t)

Model{
X (t + 1) = AX (t) + Bu(t) + ψ(t)
ŷ(t) = CX (t) + ε(t)

Learning Problem

Find A,B,C
s.t. A is stable

Non-Convex Convex
formulation relaxation

ρ(A) ≤ 1 ρ(A>A) ≤ 1

ρ(M): spectral radius of M
Rn×n

Sσ

Sλ
b

b

Â

A∗

b
ALB
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Motivation (3)

Neyman-Pearson classification
(Binary imbalanced classification)

Learning problem
Find decision function f

max
f

TPR

s.t. FPR ≤ ρ
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Neyman−Pearson constraint

FPR ≤ ρ

TPR: True Positives Rate
FPR : False Positives Rate

Probability constraint is
generally non-convex
Convex relaxation is
tedious
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Convex or Non-convex?

Convex problems not subject to initialization issue
Efficient solver for convex problems
Non-Convex problems difficult to solve ...
... but can provide better results if carefully solved

Adopted approach
Solve efficiently the non-convex problem by successive refinements of
convex relaxation
Leverage convex solvers
Handle non-smooth cases
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Multi-stage convex relaxation

Algorithm 1 Synopsis to solve minf ∈C ⊆ H J(f , S)

Set t = 0, initialize f
repeat

Find JConv and CConv , convex relaxations of J and C at ft

Solve the convex problem ft+1 = argminf ∈CConv
JConv (f , S)

until termination
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Multi-stage convex relaxation

Algorithm 2 Synopsis to solve minf ∈C ⊆ H J(f , S)

Set t = 0, initialize f
repeat

Find JConv and CConv , convex relaxations of J and C at ft

Solve the convex problem ft+1 = argminf ∈CConv
JConv (f , S)

until termination

How to find a convex relaxation?
Majoration-Minimization [Wu, 2010]

DC (difference of convex functions) programming [Tao, 1998]

Concave relaxation [Zhan, 2010]
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Multi-stage convex relaxation

Algorithm 3 Synopsis to solve minf ∈C ⊆ H J(f , S)

Set t = 0, initialize f
repeat

Find JConv and CConv , convex relaxations of J and C at ft

Solve the convex problem ft+1 = argminf ∈CConv
JConv (f , S)

until termination

Example: DC Decomposition

J(f ) = J1(f )− J2(f )

JConv = J1(f ) + 〈βt , f 〉+ cte

with βt ∈ ∂J2(ft)
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Multi-stage convex relaxation

Algorithm 4 Synopsis to solve minf ∈C ⊆ H J(f , S)

Set t = 0, initialize f
repeat

Find JConv and CConv , convex relaxations of J and C at ft

Solve the convex problem ft+1 = argminf ∈CConv
JConv (f , S)

until termination

Example: concave relaxation

J(α) = ‖α‖p

JConv = p|αt |p−1|α|+ (1− p)|αt |p

with αt the current solution
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Brief summary

Convex problems are "easy to solve"
however most of learning issues are natively non-convex
Promote Multi-stage convex relaxation to address them
Does it work?
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Learning under probability constraint: motivation (1)

Neyman Pearson classification
Binary classification with samples (x, y) ∈ X × {1,−1}
Imbalanced data (medical diagnosis, surveillance system, ...)

vs
S+ = {(xi , yi = 1)}n+i=1 S− = {(xi , yi = 1)}n−i=1 with n+ � n−

Two types of errors
False Alarm (FA) rate)
Pfa(f )=P

(
f (x) ≥ 0 | y = −1

)
Non-Detection (ND) Rate
Pnd(f )=P

(
f (x) ≤ 0 | y =1

)
Control of FA rate

Because of n+ � n−
minf Pnd(f ) st
Constraint: Pfa(f ) ≤ ρ
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Learning under probability constraint: motivation (2)

q-value constraint

min
f

Pnd(f ) s.t. Pfa(f ) ≤ q(1− Pnd(f )) (q � 1 : confidence level)

vs
Possible positives Reliable Negatives

Application
Matching spectrum with
peptides (pieces of proteins)
Fake spectra are well known
(randomly generated)
True spectra are conjectured

Assume q = 0.01 and n+ = n−
Expecting TP = 1000→ FA ≤ 10
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How to solve these problems?

Remark
1 Search for the saddle point of the lagrangian L(f , λ ≥ 0)

Neyman-Person: L(f , λ) = Pnd(f ) + λ (Pfa(f )− ρ)

q-value constraint: L(f , λ) = (1 + λq) Pnd(f ) + λPfa(f )

2 Asymmetric Costs (AC) classification: minf C+ Pnd(f ) + C− Pfa(f )

Costs specification not easy (while dealing with surrogate convex losses)

Problem involved by probability constraints
Find the appropriate costs asymmetry; Non-convexity

Solution
Guide the search by checking the probability constraint
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Empirical risk Neyman-Pearson formulation

Estimation of probabilities of error
Data set S+ = {(xi , yi = 1)}n+i=1 , S− = {(xi , yi = −1)}n−i=1

Empirical Neyman-Pearson problem

min
f

Ω(f ) + C P̂nd(f ) subject to P̂fa(f ) ≤ ρ

Empirical probability errors (0− 1 errors)

P̂nd(f ) =
1

n+

∑
i∈S+

If (xi )≤0, P̂fa(f ) =
1

n−

∑
i∈S−

If (xi )≥0

Using 0− 1 errors leads to NP hard problem
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Non-convex Neyman-Pearson classifier

Our Proposal
Non-convex approximation of the 0-1 errors

P̂nd(f )=
1
n+

∑
i∈S+

`
(
yi f (xi )

)
, P̂fa(f )=

1
n−

∑
i∈S−

`
(
yi f (xi )

)
.

Used approximation ` depends on the model family (kernel method,
deep network) and optimization algorithm
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Non-convex Neyman-Pearson classifier

Proposed Algorithms
Kernel machine (SVM)

Ramp loss approximation
`(z) = max

{
0, 1

2 (1− z)
}
−max

{
0, − 1

2 (1 + z)
}

Remark: non-convex and non-differentiable

Batch learning for non-linear SVM: tool = DC programming
Online learning for linear SVM (large scale datasets): tool = stochastic
gradient

Deep network
Sigmoid loss approximation `(z) = 1

1+ez

Online learning with stochastic gradient
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Proposed Algorithms: General Synopsis

minf ∈H Ω(f ) + C P̂nd(f ) s.t. P̂fa(f ) ≤ ρ

Step0 Augmented Lagrangian at iteration t

LA(f , λ ≥ 0;λt) = Ω(f ) + C P̂nd(f ) + λ (P̂fa(f )− ρ) +
1
ν

(λ− λt)2

Step1 f fixed → force λ to stay at the proximal of λt

λ← max
{
0, λt + ν(P̂fa(f )− ρ)

}
Step2 For λ fixed, solve the non-convex problem

f ← argminf ∈HΩ(f ) + C P̂nd(f ) + λ P̂fa(f )
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Batch learning of Neyman-Pearson SVM

Solving Step 2 at iteration t

L = 1
2‖f ‖

2
H + C+

∑
i∈S+

`
(
yi f (xi )

)
+ C−

∑
i∈S−

`
(
yi f (xi )

)
− λρ

with C+ = C/n+ and C− = λ/n−

` is the non-convex Ramp loss function

Step 2 = Non-convex Asymmetric Costs SVM

Apply Multi-stage Convex relaxation using a DC decomposition of `
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Batch learning of Neyman-Pearson SVM

`(z) = max
{
0, 1

2 (1− z)
}
−max

{
0, −1

2 (1 + z)
}

= `1(z)− `2(z)
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Decomposition of L(f , λ) = J1(f )− J2(f )

J1(f ) =
1
2
‖f ‖2H +

∑
i

Cyi `1
(
yi f (xi )

)
,

J2(f ) =
∑

i

Cyi `2(yi f (xi )) where Cyi ∈ {C+,C−}
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Batch learning of Neyman-Pearson SVM

Solving Step 2 at iteration t (cont’d)
Convex majorization of L

LConv =
1
2
‖f ‖2H+

∑
i

Cyi `1(yi f (xi ))+
∑

i

Cyi 〈∇f `2(yi ft(xi )), f − ft〉H

We obtain classical SVM-like problem
Solve the Non-convex Asymmetric Costs SVM with DC ≡ solve
iteratively SVM-type problem

Solving Neyman-Pearson SVM problem
1 For λ fixed, solve Non-convex SVM with C+ = C/n+, C− = λ/n−
2 Update λ according to Neyman-Pearson constraint satisfaction
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Online learning of Neyman-Pearson SVM

Algorithm derivation
Model f (x) = 〈w, x〉+ b
Reformulation of Neyman-Pearson problem

min
f

λc

2
‖w‖2 +

1
n+

∑
i∈S+

`
(
yi f (xi )

)
s.t.

1
n−

∑
i∈S−

`
(
yi f (xi )

)
≤ ρ

Lagrangian

L(f , λ) =
1
n

n∑
i=1

(
λc

2
‖w‖2 + ai `(yi f (xi ))− λρ

)

with the coefficients ai =

{
n/n+ ∀i ∈ S+

λn/n− ∀i ∈ S−
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Online learning of Neyman-Pearson SVM

Algorithm 5 Stochastic algorithm
Initialize λ, w, b.
repeat

Pick a random training example (xt , yt)
Update w and b in the following ways

w ← (1− γtλc)w − γtat∇w`(yt f (xt))

b ← b − γtat∇b`(yt f (xt))

If yt = −1, set
λ← max (0, λ+ νt (`(yt , f (xt))− ρ))

until convergence

γt , νt : learning rates
Neyman-Pearson constraint being related to negative samples, update
of λ occurs if the current sample has a negative label
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Remarks

Straightforward Extensions
Online algorithm for deep network
Batch and online algorithms for q-value constraint

min
f ∈H

Ω(f ) + C P̂nd(f ) subject to P̂fa(f ) ≤ q(1− P̂nd(f ))

Use the lagrangian

L(f , λ) = Ω(f ) + C P̂nd(f ) + λ
(
P̂fa(f )− q(1− P̂nd(f ))

)
= Ω(f ) + (C + λq) P̂nd(f ) + λP̂fa(f )− λq
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Performance evaluation: Neyman-Pearson

Compared methods
Batch Neyman-Pearson (NP-SVM)

Online Neyman-Pearson(ONP-SVM)

Convex Asymmetric Costs SVM (AC-SVM)

Solve a convex SVM with costs (C+,C−). Check if the solution satisfies
Neyman-Pearson constraint, otherwise look for another pair of costs.

Generative approach (GEN)

Conditional distribution of each class ≡ Gaussian distribution

Validation criterion

Jval = P̂nd + max(0, P̂fa − ρ)/ρ
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Performance evaluation: Neyman-Pearson

Results for nonlinear SVM model (medium scale ≈ 20,000 samples)
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Performance evaluation: Neyman-Pearson

Results for linear SVM model (medium scale ≈ 20,000 samples)
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Performance evaluation: Neyman-Pearson

Results for linear SVM (large scale ≈ 800,000 samples)

Table: Performances on test set (19700 positives and 3449 negatives) of RCV1-V2
for different values of ρ. Top row: left) ρ = 0.1%, right) ρ = 0.5%. Bottom Row:
left) ρ = 5% and right) ρ = 10%. Performances are percentages of errors.

ONP-SVM AC-SVM
P̂fa 0.029 0
P̂nd 76.8 93.26

ONP-SVM AC-SVM
P̂fa 0.31 0.145
P̂nd 60 59.35

ONP-SVM AC-SVM
P̂fa 4.69 5.01
P̂nd 11.84 9.53

ONP-SVM AC-SVM
P̂fa 10 8.3
P̂nd 4.63 7.9

Online NP-SVM (ONP-SVM) is in average 6 times faster than Convex
Asymmetric Cost SVM (AC-SVM)
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Performance evaluation: q-value

Setup
Peptides-spectrum matching (PSM) verification
Goal: identify consistently true positive matchings
Models investigated : non-linear SVM (qSVMOpt), deep network
(qNNOpt)

q qRanker qSVMOpt qNNOpt
0.0025 4,449 4,947 5,005
0.01 5,462 5666 5,707
0.1 7,473 7,954 7,491

Table: Number of true positives correctly identified (over 34,852).
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So far ...

Learning with probability constraint

The non-convex formulation leads to better results

State-of-art results for PSM using q-value

It is competitive in terms of computation time

Online learning is strikingly fast ...

... but should be controlled carefully
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Outline

1 Introduction
General learning problem
Discussion of convexity and non-convexity of learning problem
Multi-stage convex relaxation

2 Case study
Learning under probability constraint
Multitask learning
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Position of the problem

Brain computer interface Application
P300 Speller System
Characteristics: appearance of a deflection in the EEG signals 300ms
(P300) after submitting a subject to a stimulus (visual stimulus)
This deflection corresponds to an evoked potential (P300) to be
detected
M acquisition channels

G. GASSO (LITIS, EA 4108) Non-convex issues 05/31/2012 27 / 36



Problem setup

Issues
Identify positive signals (with P300) from negative signals
Select the useful channels or variables
Handle the variability of the signals over different sessions and subjects

Workaround
Define acquisition sessions as (nearly) similar tasks
Learn jointly the tasks to improve performances
Joint selection of discriminative features for the tasks
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Illustration

Inputs
Task 1
Feature

extraction

Task 2
Feature

extraction
Inputs

Joint Learning

Shared

features

Task 1
Decision
Function

Task 2
Decision
Function

Label

Label

Joint Learning

min
f1,f2∈H1

⊕
···

⊕
HM

2∑
t=1

nt∑
i=1

L
(
y (t)
i , ft

(
x (t)
i

))
+λ Ω(f1, f2)

Group sparsity
penalization
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Joint sparsity penalization

Two tasks with f1(x) = 〈w1, x〉+ b1 and f2(x) = 〈w2, x〉+ b2

Penalization

Ω(f1, f2) =
∑

j

Iw1,j 6=0 ∧ w2,j 6=0 NP hard !

Relaxation using mixed-norm ‖ · ‖p,q

Ωp,q(f1, f2) =
∑

j

2∑
t=1

(
(|wt,j |q)1/q

)p

=
∑

j

(‖W(:, j)‖q)p with W = [w1 w2]>

‖W(:, j)‖q encodes relation between tasks (if it is small, variable j is
irrelevant for both tasks)

`p-norm encodes joint sparsity level

0 < p < 1 enforces sparsity but problem is non-convex
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Joint sparsity penalization: non-linear case

Three kernel spaces Hm, with kernels km

Decision function ft(x)

ft(x) = ft,1(x) + ft,2(x) + ft,3(x) + bt with ft,m ∈ Hm

Penalization

Ωp,q(f1, f2) =
3∑

m=1

(
2∑

t=1

‖ft,m‖qHm

)p/q

=
3∑

m=1

(‖f·,m‖)p

‖f·,m‖ =
(∑2

t=1 ‖ft,m‖
q
Hm

)1/q
measures the importance of kernel km

across the tasks.
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Multiple kernel Multi-task Learning

Optimization problem: general case

min
f1,··· ,fT∈H1

⊕
···

⊕
HM

T∑
t=1

nt∑
i=1

L
(
y (t)
i , ft

(
x (t)
i

))
+ λΩp,q(f1, · · · , fT )

with Ωp,q(f1, · · · , fT ) =
∑M

m=1

(∑T
t=1 ‖ft,m‖

q
Hm

)p/q

Elements of solution
Convex case (p = 1): equivalent penalization with s = (2− q)/q

Ωp,q(f1, · · · , fT )2 = min
dt,m≥0

M∑
m=1

‖ft,m‖2

dt,m
s.t

∑
m

(∑
t

d1/s
t,m

)s

≤ 1

Efficient solvers exist (multiple kernel learning)
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Multiple kernel Multi-task Learning

Optimization problem: general case

min
f1,··· ,fT∈H1

⊕
···

⊕
HM

T∑
t=1

nt∑
i=1

L
(
y (t)
i , ft

(
x (t)
i

))
+ λΩp,q(f1, · · · , fT )

with Ωp,q(f1, · · · , fT ) =
∑M

m=1

(∑T
t=1 ‖ft,m‖

q
Hm

)p/q

Elements of solution
Non-Convex case (0 < p < 1) for enhanced sparsity

Use Multi-Stage Convex Refinements

Notice that Ωp,q(f1, · · · , fT ) =
∑M

m=1 g(‖f·,m‖) with g(u) = |u|p

Convex relaxation at iteration t: g(u) ≤ p|ut |p−1|u|+ (1− p)|ut |p
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Application on BCI data

9 subjects → 9 tasks
256 features, training sets of size n = 300

MTL1,2 MTLp,2 MTL1,q SepSVM Sep`1SVM
AUC 76.5 ± 0.6 76.1 ± 0.5 76.5 ± 0.6 75.6 ± 0.8 73.4 ± 1.3
# Var 191 ± 26 134 ± 33 201 ± 23 256 118 ± 30

SepSVM: tasks are trained separately using classical SVM

Sep`1SVM: tasks are trained separately using penalised `1-norm SVM
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Application on Multiclass problem

Proteins classification
Tasks: pairwise binary classification in 1-vs-all fashion
Two datasets

Dataset 1 : PSORT+ (4 classes, 541 samples)
Dataset 2 : PSORT- (5 classes, 1444 samples)

Initial number of kernels: 69

Data MTL1,2 MTLp,2 MTL1,q MCMKL
PSORT + 93.87 ± 2.82 93.62 ± 3.04 93.88 ± 2.73 93.8
# Kernels 15.4 ± 1.17 7.4 ± 1.42 15.9 ± 1.05 18
PSORT - 95.92 ± 1.35 95.90 ± 1.12 96.02 ± 1.33 96.1
# Kernels 12.9 ± 0.31 7.5 ± 0.85 12.8 ± 0.42 14
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... So good

Group sparsity based on kernels and using mixed-norm

Sharing information across tasks helps

Non-convex solutions: better or similar performances with reduced
complexity

Why does it work ?
Convex approaches provide sub-optimal solutions when dealing with
sparsity

Non-convex penalizations can alleviate these drawbacks

They trade convexity for enhanced sparsity

Some theoretical guarantees are emerging (at least for regression)
[Zhan 2010]
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