Algorithms for a family of non-convex issues in machine

learning

G. GASSO (LITIS, EA 4108)

Gilles GASSO

LITIS EA 4108

Séminaire Gipsa-Lab

May 31, 2012
.llz . Ataille humaine
. ""SA a I'échelle du monde
o® ROUEN
Non-convex issues 05/31/2012 1/36



@ Introduction
@ General learning problem
o Discussion of convexity and non-convexity of learning problem
o Multi-stage convex relaxation

© Case study

@ Learning under probability constraint
@ Problem formulation
@ Algorithms
@ Empirical evaluation
@ Multitask learning
@ Joint sparsity penalization
@ MKL-MTL Algorithms
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General framework
A

Learning problem J

Dataset S = {(x;,y;) € X x Y}, iid. sampled

o Goal: learn a functional relation f : X — Y

f belongs to space of functions H

Many learning problems come in the form

(P) minJ(F,S) with J(F.S)=L(F.5)+AQf), CCH

L: data fidelity cost, Q: penalization term and A > 0
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General framework
A

Examples J

(P) min J(f.S) with J(f.S)=L(.S)+\Q(f), CCH

SVM for binary classification

o f: a non-linear function

@ Hinge loss based data fidelity cost

n f ::?AA. )

L(F,S) = > max(0,1 — yif (x;)) 4";“ A |
i—1 “/N‘/;:.‘.

ol e .‘~ A .o’

° .*.

@ Smoothness penalization / *f'f'
a(r) = 113 e
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General framework
7\

Examples J

(P) minJ(F,S) with J(f.S)=L(f.S)+AQ(F), CCH

Regression
o f(x) =(w,¢(x)) + b
Least I ;
o Least squares loss . . .
L(F.S) =) (vi — f(x)))? I oo
i=1 i 0 R -‘- .‘i o
mh ! \
os = A
@ Smoothness penalization o LA i o
g 54 g
Q(f') — ||W||2 ‘.50 05 s 2 25
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Features of the learning problem

2\
(P) min J(F.S) with J(f,S)=L(f,S)+AQ(f), CCH
S

Convexity of Problem (P)

@ Jis convex, and
Q@ Set C is convex

Convex loss function L

@ Either J or C is non-convex

Non-convexity of (P)

——Hinge Loss

‘‘‘‘‘ Logistic Loss

= = =Quadratic Loss| 1
4
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Non-Convex loss L

===0-1Loss
——Ramp Loss
- = Sigmoid Loss|
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Features of the learning problem

Convexity of Problem (P)
Q Jis convex, and
Q Set C is convex

Convex Penalty Q

_I‘ penafty
_I2 penalty

Penalty Q(w)
ud
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(P) min J(F.S) with J(f,S)=L(f,S)+AQ(f), CCH
S

Non-convexity of (P)

@ Either J or C is non-convex

Non-Convex Penalty Q

13}

- -Io penalty

_Ip penalty, 0 <p<1

== SCAD

Penalty Q(w)

4
3

0
Parameter w
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Features of the learning problem

(P) minJ(F,S) with J(f.S)=L(f.S)+AQ(F). CCH

Convexity of Problem (P)
Q Jis convex, and
Q Set C is convex

Non-convexity of (P)

@ Either J or C is non-convex

Pros and Cons

Pros and Cons

@ Any local solution is globally o Difficult to solve

optimal o Find all local minima to get
o Efficient computation global solution
o Initialization does not matter o Initialization really matters
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Features of the learning problem

(P) minJ(F,S) with J(f.S)=L(f.S)+AQF). CCH

Convexity of Problem (P)

@ Jis convex, and

Non-convexity of (P)

@ Either J or C is non-convex
Q@ Set C is convex

Pros and Cons Pros and Cons

o Any local solution is globally o Difficult to solve
optimal o Find all local minima to get
o Efficient computation global solution
o Initialization does not matter o Initialization really matters
Convexity of (P) is a blessing.
However non-convexity can pay off. Why to prefer it? J
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Motivation (1)

Sparse representation (Compressive sensing)

Raw signals
Sparse Features
o OT1TTTTT1]
~drnHn EEEEEE NS
CITTITTTT1]
'\""'\A\N
o Dictionary D € RVxd Need of sparsity
e N < d (more variables than @ computation

samples)
o Signal X ¢ RN

@ interpretation

@ accuracy

Find a sparse decomposition of X = o
signal X € RN over D
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Motivation (1)

Mingegrd || X — Da||? + AQ(a)
Q(av): sparsity inducing penalisation

Convex relaxation
Q /1-norm Q) = |1
Q fy-norm Q(a) = |||

Non-convex formulation
@ Count: Q(a) = 37 Toj0
@ A Concave relaxation
Qa) = Sy lajlP, 0 < p< 1

2r ___Iopenalty
_|1 penalty
_Izpenalty
—lypenalty. 0<p<1f @ Convex formulations lead
to biased estimation of o

o Concave relaxation: better
approximation of || - ||o

R 0 1
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Motivation (2)

Dynamical system modelling under stability constraint

Input Black-Box Output
u(t) model M (1)

Learning Problem

{ X(t+1) = AX(t)+ Bu(t) +9(t) Find A, B, C
y(t) = CX(t) +e(t) s.t. A s stable
Non-Convex Convex

formulation relaxation

p(A) <1 | p(ATA) <1

p(M): spectral radius of M
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Motivation (3)

Neyman-Pearson classification
(Binary imbalanced classification)

Learning problem
Find decision function f

max TPR ;
f 02 i Neyman-Pearson constraint
s.t. FPR< P FPR<p
00 0.2 0.4 0.6 0.8 1
FPR

@ Probability constraint is

o TPR: True Positives Rate generally non-convex

o FPR : False Positives Rate o Convex relaxation is

tedious
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Convex or Non-convex?

Convex problems not subject to initialization issue
Efficient solver for convex problems

Non-Convex problems difficult to solve ...

... but can provide better results if carefully solved

Adopted approach

@ Solve efficiently the non-convex problem by successive refinements of
convex relaxation

o Leverage convex solvers

o Handle non-smooth cases
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Multi-stage convex relaxation

Algorithm 1 Synopsis to solve minsec c 9 J(f, S)

Set t = 0, initialize f
repeat

Find Jcony and Ccony, convex relaxations of J and C at f;
Solve the convex problem f;y1 = argmin¢ce.  Jconu(f; S)

until termination
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Multi-stage convex relaxation
A

Algorithm 2 Synopsis to solve minsecc 94 J(f, S)

Set t = 0, initialize f
repeat

Find Jcony and Cceony, convex relaxations of J and C at £
Solve the convex problem f;,1 = argmingce  Jcon(f,S)

until termination

How to find a convex relaxation?

@ Majoration-Minimization [Wu, 2010]
o DC (difference of convex functions) programming [Tao, 1998]

o Concave relaxation [Zhan, 2010]
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Multi-stage convex relaxation
‘\

Algorithm 3 Synopsis to solve minsecc 3 J(f, S)

Set t = 0, initialize f
repeat

Find Jcony and Ccony, convex relaxations of J and C at f;
Solve the convex problem f;y1 = argminsce.  Jconu(f; S)

until termination

Example: DC Decomposition . 3 :ij(:()z)
J(f) — Jl(f)_Jz(f) 0.6 1
JConv - Jl(f) + </6t7 f> + cte o4 ’ “,:"""
-1 d
0.2 e
with 3, € 0h(f) o\ 21 S
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Multi-stage convex relaxation

Algorithm 4 Synopsis to solve minsecc 34 J(f, S)

Set t = 0, initialize f
repeat

Find Jcony and Ccony, convex relaxations of J and C at £
Solve the convex problem f;y1 = argminsce.  Jconv(f; S)

until termination

—Objective function »
. - - .Majorizer at 6,=1 ‘
Example: concave relaxation F1s
g
Ja) = llal? £
JConv = p|05t|p71|01| + (1 - p)|af|p 1

J(o)==

with «; the current solution

93 -2 -1

@o
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Brief summary

Convex problems are "easy to solve"

°

@ however most of learning issues are natively non-convex
o Promote Multi-stage convex relaxation to address them
o

Does it work?
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7\

@ Case study
o Learning under probability constraint
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Learning under probability constraint: motivation (1)

Neyman Pearson classification
o Binary classification with samples (x,y) € X x {1, -1}

o Imbalanced data (medical diagnosis, surveillance system, ...)

=Y

rl7 .
Sy ={(xi,yi = 1}, {(xi,yi = 1)}1=; with ny > n_

Two types of errors

Control of FA rate

o False Alarm (FA) rate)
Pra(f)=P(f(x) > 0| y=—1)

@ Non-Detection (ND) Rate
Pog(f)=P(f(x) <0|y=1)
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Learning under probability constraint: motivation (2)

g-value constraint

mfin Pa(f) st Pa(f) <q(l—P.,u(f)) (g < 1:confidence level)

Vs
Possible positives Reliable Negatives

Application
. . q = Pfa/(1-Pnd
@ Matching spectrum with -t = +_§++_++(_ ++)++
. s fx

peptides (pieces of proteins) fx)

6 Accepted Matchings
o Fake spectra are well known
(randomly generated) @ Assume g =0.01 and ny = n_

o True spectra are conjectured o Expecting TP = 1000 — FA < 10
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How to solve these problems?

A

@ Search for the saddle point of the lagrangian £(f, A > 0)
o Neyman-Person: L(f,\) = P.a(f) + A (Psa(f) — p)
o g-value constraint: £(f,A) = (14 Aq) Pra(f) + APga(f)
@ Asymmetric Costs (AC) classification: mins Ci Pg(f) + C_ Pgy(f)

o Costs specification not easy (while dealing with surrogate convex losses)

y

Problem involved by probability constraints

Find the appropriate costs asymmetry; Non-convexity

Guide the search by checking the probability constraint I
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Empirical risk Neyman-Pearson formulation

Estimation of probabilities of error
o Dataset S. = {(x;,y;i =1)}",, S_={(xi,yi=-1)};
@ Empirical Neyman-Pearson problem

min Q(f) + CP.y(f) subject to Pg(f)<p

o Empirical probability errors (0 — 1 errors)

A

A 1 1
Pra(f) = . > Iip<o, Palf) = - > T
i€Sy T ies_

Using 0 — 1 errors leads to NP hard problem

J

G. GASSO (LITIS, EA 4108) Non-convex issues 05/31/2012
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Non-convex Neyman-Pearson classifier

A

Our Proposal

@ Non-convex approximation of the 0-1 errors

nd(f ZZ ylf(x ) Pfa ZE y,f(x

IES+ T ies.

o Used approximation ¢ depends on the model family (kernel method,
deep network) and optimization algorithm

—0-1 loss
0.8¢ —Ramp loss
- - Sigmoid loss

0.6/ 9
0.4r
0.2r

5 05 0 05 1
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Non-convex Neyman-Pearson classifier

Proposed Algorithms
o Kernel machine (SVM)

o Ramp loss approximation
l(z) =max {0, 3 (1 —z)} —max {0, -3 (1 +2)}

o Remark: non-convex and non—dlfferentlable

o Batch learning for non-linear SVM: tool = DC programming

o Online learning for linear SVM (large scale datasets): tool = stochastic
gradient

o Deep network

o Sigmoid loss approximation /(z) = 2

Trer
o Online learning with stochastic gradient
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Proposed Algorithms: General Synopsis

minfey Q(F) + CPha(F) st Pa(f)<p

Step0 Augmented Lagrangian at iteration t

N A 1
La(f, X 2 0:2¢) = Q(F) + CPoa(f) + A (Pra(F) = p) + ~ (A — Ae)?
Stepl f fixed — force X to stay at the proximal of \;
X ¢ max {o, Ae + (P (f) — p)}

Step2 For X fixed, solve the non-convex problem

f < argmingcQ(f) + C f’nd(f) + A l€’fa(’r)

G. GASSO (LITIS, EA 4108) Non-convex issues 05/31/2012 18 / 36



Batch learning of Neyman-Pearson SVM

Solving Step 2 at iteration t
o L=;lIfllf + CiXics, Lif(xi)) + C-Xjes_ £(yif (xi)) — Ap
with C;, = C/ny and C_ = \/n_

o / is the non-convex Ramp loss function
@ Step 2 = Non-convex Asymmetric Costs SVM

o Apply Multi-stage Convex relaxation using a DC decomposition of £
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Batch learning of Neyman-Pearson SVM

o {(z) =max {0, 3 (1 —2)} —max {0, =3 (1 +2)} = l1(z) — la(2)

1

—J,@
3
08 -
2
0.6| 1
0.4 o0 e
-1
02
-2
0 %
R 05 0 05 1 1 05 0 05 1

e Decomposition of L(f,\) = A(f) — J(f)
1
A(f) = SIFIG+ D Gy la(vif(x)

L(f) = D Culalyif(x) where Gy, €{Cy,C}
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Batch learning of Neyman-Pearson SVM

Solving Step 2 at iteration t (cont'd)

o Convex majorization of £
Leeomy = IIfIIH+Z Cy; (a(yif +Z Cyi (Vela(yife(xi)), = fi)n

@ We obtain classical SVM-like problem

@ Solve the Non-convex Asymmetric Costs SVM with DC = solve
iteratively SVM-type problem

Solving Neyman-Pearson SVM problem
@ For A fixed, solve Non-convex SVM with Cy = C/n., C_ = A\/n_

Q Update A according to Neyman-Pearson constraint satisfaction
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Online learning of Neyman-Pearson SVM

Algorithm derivation
o Model f(x) = (w,x) + b
o Reformulation of Neyman-Pearson problem
LA 1 1
min 25w+ — > " l(yif(x)) st — Y £(yif(x)) <p
f2 N+ ics, N-ics
o Lagrangian

n

£F ) = 3 3 (Il + a0 )~ o)

i=1

with the coefficients a; =

n/ny Yi€Sy
An/n_ VieS_
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Online learning of Neyman-Pearson SVM

Algorithm 5 Stochastic algorithm
Initialize X\, w, b.
repeat
Pick a random training example (¢, yt)
Update w and b in the following ways

W= (T=yede)Ww — year Vwl(yef (xe))
b <« b—arVpl(y:f(xt))

If y; = —1, set
A < max (0, A + v (U(y, F(xt)) — p))

until convergence

@ v, V¢ learning rates

o Neyman-Pearson constraint being related to negative samples, update
of X\ occurs if the current sample has a negative label
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Straightforward Extensions

@ Online algorithm for deep network

o Batch and online algorithms for g-value constraint

min Q(f)+ CPy(f) sublect to Pp(f) < q(1 — Pra(f)
€

o Use the lagrangian

L(F,N) = Q)+ CPu(f) + ) (Pu(f) — a1 - Pra(1)))
Q(f) + (C + Aq) Pua(f) + APra(f) — Aq
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Performance evaluation: Neyman-Pearson

Compared methods

o Batch Neyman-Pearson (NP-SVM)

@ Online Neyman-Pearson(ONP-SVM)
o Convex Asymmetric Costs SVM (AC-SVM)

o Solve a convex SVM with costs (C;, C_). Check if the solution satisfies
Neyman-Pearson constraint, otherwise look for another pair of costs.

o Generative approach (GEN)

o Conditional distribution of each class = Gaussian distribution

Validation criterion

Jva/ = lSnd + max(O, Isfa - ,0)/,0
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Performance evaluation: Neyman-Pearson

Results for nonlinear SVM model (medium scale ~ 20,000 samples) |
- N MagicGammaTelescope
MagicGammaTelescope MagicGammaTelescope
04 3 5{[~~NP-SVM
0.8 _ |-s-Ac-swm
—NP-SVM / | NP—-SVM| Z |-+-ceN
0.3 . o 4
g sesAC-SWME 1 To6f % . -e-AC-SVM E
5 |[*"GEN - = : -+-GEN s
£0.2 ° =
.E_ .E' . g N
w / [} g 2
0.1 A 3
..
L iz 1
0.010.05 0.1 0.4 0.010.05 0.1 0.4 0.010.05 0.1

0.25 0.25 0.25
Target Pfa Target Pfa Target Pfa

o Batch Neyman-Pearson (NP-SVM)
o Convex Asymmetric Costs SVM (AC-SVM)
o Generative approach (GEN)
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Performance evaluation: Neyman-Pearson

Results for linear SVM model (medium scale ~ 20,000 samples)

MagicGammaTelescope

MagicGammaTelescope

MagicGammaTelescope

»
&
&

09 ~——=ONP-SVM
0.35 —ONP-SVM =
04 —=-BNP-SVM o8 ~=BNP-SVM E 2
-e=-AC-SVM 0.7 =e=AC-SVM Py
025 SA-GEN 508 £ 150
£ oo &os s
0.15| 0.4 gmo EE R SEEETER NS SEERREREN
0.1 -4 0.3] g
0.05 oz e S %
e 025 04 n;m 005 01 0.25 0.4 10.010.05 0.1 0.25 0.4
Target Pfa Target Pfa Target Pfa
e Batch Neyman-Pearson (NP-SVM)
@ Online Neyman-Pearson(ONP-SVM)
o Convex Asymmetric Costs SVM (AC-SVM)
o Generative approach (GEN)
G. GASSO (LITIS, EA 4108) Non-convex issues 05/31/2012
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Performance evaluation: Neyman-Pearson

Results for linear SVM (large scale ~ 800,000 samples) J

Table: Performances on test set (19700 positives and 3449 negatives) of RCV1-V2
for different values of p. Top row: left) p = 0.1%, right) p = 0.5%. Bottom Row:
left) p = 5% and right) p = 10%. Performances are percentages of errors.

ONP-SVM  AC-SVM

ONP-SVM  AC-SVM

Pr 0.029 0 P, 0.31 0.145
P.q 76.8 93.26 Pod 60 59.35
ONP-SVM  AC-SVM ONP-SVM  AC-SVM
P, 4.69 5.01 P, 10 8.3
Py 11.84 9.53 Py 4.63 7.9

Online NP-SVM (ONP-SVM) is in average 6 times faster than Convex

Asymmetric Cost SVM (AC-SVM)

G. GASSO (LITIS, EA 4108)
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Performance evaluation: g-value
s

o Peptides-spectrum matching (PSM) verification

o Goal: identify consistently true positive matchings

@ Models investigated : non-linear SVM (qSVMOpt), deep network
(gNNOpt)

q gRanker gqSVMOpt gNNOpt
0.0025 4,449 4,947 5,005
0.01 5462 5666 5,707
0.1 7,473 7,954 7,491

Table: Number of true positives correctly identified (over 34,852).
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Learning with probability constraint

The non-convex formulation leads to better results

o State-of-art results for PSM using g-value

It is competitive in terms of computation time
@ Online learning is strikingly fast ...

... but should be controlled carefully
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@ Case study

o Multitask learning
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Position of the problem

A

Brain computer interface Application

@ P300 Speller System
o Characteristics: appearance of a deflection in the EEG signals 300ms
(P300) after submitting a subject to a stimulus (visual stimulus)

@ This deflection corresponds to an evoked potential (P300) to be
detected
o M acquisition channels )

G. GASSO (LITIS, EA 4108) Non-convex issues 05/31/2012 27 / 36



Problem setup

o Identify positive signals (with P300) from negative signals

@ Select the useful channels or variables

@ Handle the variability of the signals over different sessions and subjects

Workaround

@ Define acquisition sessions as (nearly) similar tasks
@ Learn jointly the tasks to improve performances

@ Joint selection of discriminative features for the tasks

G. GASSO (LITIS, EA 4108) Non-convex issues 05/31/2012 28 / 36



Joint Learning Joint Learning

s Y ' Y
Task 1 Task 1
Inputs ===~  Feature Decision Label
extraction Shared Function
y S
I T1 1]
. [ITTT1TT1T11
Task 2 features Task 2 |
Inputs =~  Feature Decision Label
extraction Function
L A WV, N - WV,
e e e e e e e e e e m e ——————a
2 & Group sparsit:
i DL (0 () R
feH1 @ D HM T penalization
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Joint sparsity penalization
s

o Two tasks with f1(x) = (w1, x) + by and f(x) = (wa,x) + by
o Penalization

Qfi, £) =Y Ty ;0 A waj#0 NP hard |
J
o Relaxation using mixed-norm || - || 4

2
Qpalfis ) = 3D ((wegl)™?)”
j t=1

> (WG D) with W= [wy wa] "

J
o [[W(:,f)|lq encodes relation between tasks (if it is small, variable j is
irrelevant for both tasks)

o {p-norm encodes joint sparsity level
e 0 < p < 1 enforces sparsity but problem is non-convex
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Joint sparsity penalization: non-linear case

@ Three kernel spaces H,, with kernels k,

o Decision function f;(x)
fe(x) = fe1(x) + feo(x) + fr3(x) + by with fom € Hpm

o Penalization

3

3 2 p/q
Qoglh, o) =D (Z Hf},mH%m> = > (If.ml)?
t=1

m=1 = m=1

1/q
fml = <Z§:1 ||fr,m||;’_lm> measures the importance of kernel ki,
across the tasks.
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Multiple kernel Multi-task Learning

Optimization problem: general case

T n
: (1) (¥)
fl,-..,freytﬂlgg...@HM ;; L (y,-f ,ft (Xit )) + /\Qp,q(fl, 500 ,fT)

: p/q
with Qp.q(f, -+, fr) = Sy (ST Ifemlld, )
Elements of solution

o Convex case (p = 1): equivalent penalization with s = (2 — q)/q

M 5
. fr.mll?
Qpq(fr,: - ,fT)2 = dm|20 E ;;—” s 2 : (Z d,i{:) <1
em20 " ,m = -

o Efficient solvers exist (multiple kernel learning)

v
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Multiple kernel Multi-task Learning

Optimization problem: general case

T ng
[ E E (1) (t)
fl»"'7fT€7g:.lge"'®HM =1 i=1 L (yit ! ﬂ (Xit )) + )\Qpaq(ﬁJ e 7fT)

. p/q
with p.g(f, ) = DMy (S el

y

Elements of solution

@ Non-Convex case (0 < p < 1) for enhanced sparsity

@ Use Multi-Stage Convex Refinements
o Notice that Q, 4(f1, -, fr) = Zf\n/’:l g(llf ml|) with g(u) = |ulP

o Convex relaxation at iteration t: g(u) < plue|P~|u| + (1 — p)|us|P
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Application on BCI data

@ 9 subjects — 9 tasks

e 256 features, training sets of size n = 300

MTLy MTL,> | MTLig || SepSVM | Sept;SVM
AUC 765 0.6 | 76.1 £ 05 | 765+ 06| 756 +0.8 | 73.4 + 1.3
# Var 191 + 26 134 + 33 201 + 23 256 118 + 30
SepSVM: tasks are trained separately using classical SVM
Sepl1SVM: tasks are trained separately using penalised ¢1-norm SVM
G. GASSO (LITIS, EA 4108) Non-convex issues 05/31/2012 33 / 36



Application on Multiclass problem

o Proteins classification

o Tasks: pairwise binary classification in 1-vs-all fashion

o Two datasets

o Dataset 1 : PSORT+ (4 classes, 541 samples)
o Dataset 2 : PSORT- (5 classes, 1444 samples)

o Initial number of kernels: 69

Data MTL1 MTLp 2 MTLy 4 MCMKL
PSORT + || 93.87 £ 2.82 | 93.62 + 3.04 | 93.88 £ 2.73 93.8
# Kernels || 15.4 £ 1.17 7.4 £1.42 15.9 + 1.05 18
PSORT - || 95.92 +£ 1.35 | 95.90 + 1.12 | 96.02 + 1.33 96.1
# Kernels || 129 £031 | 75+ 085 | 12.8 +0.42 14
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o Group sparsity based on kernels and using mixed-norm

@ Sharing information across tasks helps

@ Non-convex solutions: better or similar performances with reduced
complexity

o Why does it work ?
o Convex approaches provide sub-optimal solutions when dealing with
sparsity

o Non-convex penalizations can alleviate these drawbacks
o They trade convexity for enhanced sparsity

o Some theoretical guarantees are emerging (at least for regression)
[Zhan 2010]

G. GASSO (LITIS, EA 4108) Non-convex issues 05/31/2012 35/ 36



References

[Coll 2006] R. Collobert, F. Sinz, J. Weston, and L. Bottou. "Trading convexity for
scalability". In: Proceedings of the 23rd international conference on Machine learning
(ICML 2006), pp. 201-208, Pennsylvania, USA, 2006.

[Wu 2010] T. T. Wu and K. Lange. "The MM Alternative to EM". Statistical Science,
Vol. 25, No. 4, pp. 492-505, 2010.

[Zhan 2010] T. Zhang. "Analysis of Multi-stage Convex Relaxation for Sparse
Regularization". Journal of Machine Learning Research, Vol. 11, pp. 1081-1107, March
2010.

[Tao, 1998] P. D. Tao and L. T. H. An. "DC optimization algorithms for solving the
trust region subproblem". SIAM Journal of Optimization, Vol. 8, No. 2, pp. 476-505,
1998.

G. GASSO (LITIS, EA 4108) Non-convex issues 05/31/2012 36 / 36



	Introduction
	General learning problem
	Discussion of convexity and non-convexity of learning problem
	Multi-stage convex relaxation

	Case study
	Learning under probability constraint
	Multitask learning


