Algorithms for a family of non-convex issues in machine learning

Gilles GASSO

LITIS EA 4108

Séminaire Gipsa-Lab

May 31, 2012

À taille humaine à l'échelle du monde
(1) Introduction

- General learning problem
- Discussion of convexity and non-convexity of learning problem
- Multi-stage convex relaxation
(2) Case study
- Learning under probability constraint
- Problem formulation
- Algorithms
- Empirical evaluation
- Multitask learning
- Joint sparsity penalization
- MKL-MTL Algorithms

General framework

Learning problem

- Dataset $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}\right\}_{i=1}^{n}$ i.i.d. sampled
- Goal: learn a functional relation $f: \mathcal{X} \rightarrow \mathcal{Y}$
- f belongs to space of functions \mathcal{H}
- Many learning problems come in the form

$$
(P) \quad \min _{f \in \mathcal{C}} J(f, S) \quad \text { with } \quad J(f, S)=L(f, S)+\lambda \Omega(f), \quad \mathcal{C} \subseteq \mathcal{H}
$$

- L: data fidelity cost, Ω : penalization term and $\lambda \geq 0$

General framework

Examples

(P) $\min _{f \in \mathcal{C}} J(f, S)$ with $J(f, S)=L(f, S)+\lambda \Omega(f), \quad \mathcal{C} \subseteq \mathcal{H}$

SVM for binary classification

- f : a non-linear function
- Hinge loss based data fidelity cost

$$
L(f, S)=\sum_{i=1}^{n} \max \left(0,1-y_{i} f\left(x_{i}\right)\right)
$$

- Smoothness penalization

$$
\Omega(f)=\|f\|_{\mathcal{H}}^{2}
$$

General framework

Examples

$(P) \min _{f \in \mathcal{C}} J(f, S)$ with $J(f, S)=L(f, S)+\lambda \Omega(f), \quad \mathcal{C} \subseteq \mathcal{H}$

Regression

- $f(x)=\langle w, \phi(\mathbf{x})\rangle+b$
- Least squares loss

$$
L(f, S)=\sum_{i=1}^{n}\left(y_{i}-f\left(\mathrm{x}_{i}\right)\right)^{2}
$$

- Smoothness penalization

$$
\Omega(f)=\|\mathbf{w}\|^{2}
$$

Features of the learning problem

$(P) \min _{f \in \mathcal{C}} J(f, S) \quad$ with $\quad J(f, S)=L(f, S)+\lambda \Omega(f), \quad \mathcal{C} \subseteq \mathcal{H}$

Convexity of Problem (P)

(1) J is convex, and
(2) Set \mathcal{C} is convex

Convex loss function L

Non-convexity of (P)
(1) Either J or \mathcal{C} is non-convex

Non-Convex loss L

Features of the learning problem

$(P) \min _{f \in \mathcal{C}} J(f, S) \quad$ with $\quad J(f, S)=L(f, S)+\lambda \Omega(f), \quad \mathcal{C} \subseteq \mathcal{H}$

Convexity of Problem (P)

(1) J is convex, and
© Set \mathcal{C} is convex

Convex Penalty Ω

Non-convexity of (P)
(1) Either J or \mathcal{C} is non-convex

Non-Convex Penalty Ω

Features of the learning problem

$(P) \min _{f \in \mathcal{C}} J(f, S) \quad$ with $\quad J(f, S)=L(f, S)+\lambda \Omega(f), \quad \mathcal{C} \subseteq \mathcal{H}$

Convexity of Problem (P)

(1) J is convex, and
(2) Set \mathcal{C} is convex

Pros and Cons

- Any local solution is globally optimal
- Efficient computation
- Initialization does not matter

Non-convexity of (P)
(1) Either J or \mathcal{C} is non-convex

Pros and Cons

- Difficult to solve
- Find all local minima to get global solution
- Initialization really matters

Features of the learning problem

$(P) \min _{f \in \mathcal{C}} J(f, S) \quad$ with $\quad J(f, S)=L(f, S)+\lambda \Omega(f), \quad \mathcal{C} \subseteq \mathcal{H}$

Convexity of Problem (P)

(1) J is convex, and
(2) Set \mathcal{C} is convex

Pros and Cons

- Any local solution is globally optimal
- Efficient computation
- Initialization does not matter

Non-convexity of (P)
(1) Either J or \mathcal{C} is non-convex

Pros and Cons

- Difficult to solve
- Find all local minima to get global solution
- Initialization really matters

Convexity of (P) is a blessing. However non-convexity can pay off. Why to prefer it?

Motivation (1)

Sparse representation (Compressive sensing)

- Dictionary $D \in \mathbb{R}^{N \times d}$
- $N \ll d$ (more variables than samples)
- Signal $X \in \mathbb{R}^{N}$

Goal

Find a sparse decomposition of signal $X \in \mathbb{R}^{N}$ over D

Need of sparsity

- computation
- interpretation
- accuracy

Motivation (1)

$$
\min _{\alpha \in \mathbb{R}^{d}}\|X-D \alpha\|^{2}+\lambda \Omega(\alpha)
$$

Non-convex formulation

(1) Count: $\Omega(\boldsymbol{\alpha})=\sum_{j=1}^{d} \mathbb{I}_{\alpha_{j} \neq 0}$
(c) A Concave relaxation

$$
\Omega(\alpha)=\sum_{j=1}^{d}\left|\alpha_{j}\right|^{p}, 0<p<1
$$

Convex relaxation

(1) ℓ_{1}-norm $\Omega(\boldsymbol{\alpha})=\|\boldsymbol{\alpha}\|_{1}$
(c) ℓ_{2}-norm $\Omega(\boldsymbol{\alpha})=\|\boldsymbol{\alpha}\|_{2}^{2}$

- Convex formulations lead to biased estimation of $\boldsymbol{\alpha}$
- Concave relaxation: better approximation of $\|\cdot\|_{0}$

Motivation (2)

Dynamical system modelling under stability constraint

Model

$$
\begin{cases}X(t+1) & =A X(t)+B u(t)+\psi(t) \\ \hat{y}(t) & =C X(t)+\varepsilon(t)\end{cases}
$$

Learning Problem

Find A, B, C
s.t. A is stable

Non-Convex formulation	Convex relaxation
$\rho(A) \leq 1$	$\rho\left(A^{\top} A\right) \leq 1$
$\rho(M):$ spectral radius of M	

Motivation (3)

Neyman-Pearson classification
(Binary imbalanced classification)

Learning problem

Find decision function f

- Probability constraint is generally non-convex
- Convex relaxation is tedious
- TPR: True Positives Rate
- FPR : False Positives Rate

Convex or Non-convex?

- Convex problems not subject to initialization issue
- Efficient solver for convex problems
- Non-Convex problems difficult to solve ...
- ... but can provide better results if carefully solved

Adopted approach

- Solve efficiently the non-convex problem by successive refinements of convex relaxation
- Leverage convex solvers
- Handle non-smooth cases

Multi-stage convex relaxation

Algorithm 1 Synopsis to solve $\min _{f \in \mathcal{C} \subseteq \mathcal{H}} J(f, S)$
Set $t=0$, initialize f repeat

Find $J_{\text {Conv }}$ and $\mathcal{C}_{\text {Conv }}$, convex relaxations of J and \mathcal{C} at f_{t}
Solve the convex problem $f_{t+1}=\operatorname{argmin}_{f \in \mathcal{C}} \operatorname{Conv} J_{\text {Conv }}(f, S)$
until termination

Multi-stage convex relaxation

Algorithm 2 Synopsis to solve $\min _{f \in \mathcal{C} \subseteq \mathcal{H}} J(f, S)$

Set $t=0$, initialize f
repeat
Find $J_{\text {Conv }}$ and $\mathcal{C}_{\text {Conv }}$, convex relaxations of J and \mathcal{C} at f_{t}
Solve the convex problem $f_{t+1}=\operatorname{argmin}_{f \in \mathcal{C}} \operatorname{Conv} J_{\text {Conv }}(f, S)$ until termination

How to find a convex relaxation?

- Majoration-Minimization [Wu, 2010]
- DC (difference of convex functions) programming [Tao, 1998]
- Concave relaxation [Zhan, 2010]

Multi-stage convex relaxation

Algorithm 3 Synopsis to solve $\min _{f \in \mathcal{C} \subseteq \mathcal{H}} J(f, S)$

Set $t=0$, initialize f
repeat
Find $J_{\text {Conv }}$ and $\mathcal{C}_{\text {Conv }}$, convex relaxations of J and \mathcal{C} at f_{t}
Solve the convex problem $f_{t+1}=\operatorname{argmin}_{f \in \mathcal{C}} \operatorname{Conv} J_{\text {Conv }}(f, S)$ until termination

Example: DC Decomposition

$$
\begin{aligned}
J(f) & =J_{1}(f)-J_{2}(f) \\
J_{\text {Conv }} & =J_{1}(f)+\left\langle\boldsymbol{\beta}_{t}, f\right\rangle+c t e
\end{aligned}
$$

$$
\text { with } \boldsymbol{\beta}_{t} \in \partial J_{2}\left(f_{t}\right)
$$

Multi-stage convex relaxation

Algorithm 4 Synopsis to solve $\min _{f \in \mathcal{C} \subseteq \mathcal{H}} J(f, S)$
Set $t=0$, initialize f
repeat
Find $J_{\text {Conv }}$ and $\mathcal{C}_{\text {Conv }}$, convex relaxations of J and \mathcal{C} at f_{t}
Solve the convex problem $f_{t+1}=\operatorname{argmin}_{f \in \mathcal{C}} \operatorname{Conv} J_{\text {Conv }}(f, S)$
until termination

Example: concave relaxation

$$
\begin{aligned}
J(\alpha) & =\|\alpha\|^{p} \\
J_{\text {Conv }} & =p\left|\alpha_{t}\right|^{p-1}|\alpha|+(1-p)\left|\alpha_{t}\right|^{p}
\end{aligned}
$$

with α_{t} the current solution

Brief summary

- Convex problems are "easy to solve"
- however most of learning issues are natively non-convex
- Promote Multi-stage convex relaxation to address them
- Does it work?

Outline

(1) Introduction

- General learning problem
- Discussion of convexity and non-convexity of learning problem
- Multi-stage convex relaxation
(2) Case study
- Learning under probability constraint
- Multitask learning

Learning under probability constraint: motivation (1) Olilis

Neyman Pearson classification

- Binary classification with samples $(\mathbf{x}, y) \in \mathcal{X} \times\{1,-1\}$
- Imbalanced data (medical diagnosis, surveillance system, ...)

$S_{+}=\left\{\left(\mathrm{x}_{i}, y_{i}=1\right)\right\}_{i=1}^{n_{+}}$

VS

$S_{-}=\left\{\left(x_{i}, y_{i}=1\right)\right\}_{i=1}^{n_{-}} \quad$ with $n_{+} \gg n_{-}$

- False Alarm (FA) rate)

$$
\mathrm{P}_{\mathrm{fa}}(f)=\mathbb{P}(f(\mathbf{x}) \geq 0 \mid y=-1)
$$

- Non-Detection (ND) Rate

$$
\mathbf{P}_{\mathrm{nd}}(f)=\mathbb{P}(f(\mathbf{x}) \leq 0 \mid y=1)
$$

Control of FA rate

- Because of $n_{+} \gg n_{-}$
- $\min _{f} \mathrm{P}_{\mathrm{nd}}(f)$ st
- Constraint: $\mathbf{P}_{\mathrm{fa}}(f) \leq \rho$

Learning under probability constraint: motivation (2) Olilis

q-value constraint

```
min}\mp@subsup{f}{f}{}\mp@subsup{P}{nd}{}(f)\quad\mathrm{ s.t. }\quad\mp@subsup{\textrm{P}}{\textrm{fa}}{}(f)\leqq(1-\mp@subsup{P}{\mathrm{ nd}}{}(f))\quad(q<<1: confidence level)
```


Possible positives

Reliable Negatives

Application

- Matching spectrum with peptides (pieces of proteins)

$$
\begin{aligned}
& \mathrm{q}=\mathrm{Pfa} /(1-\mathrm{Pnd}) \\
& \xrightarrow{-+-+-++-++-++++} \underset{0}{\text { Accepted Matchings }} f(\mathrm{x})
\end{aligned}
$$

- Fake spectra are well known (randomly generated)
- Assume $q=0.01$ and $n_{+}=n_{-}$
- True spectra are conjectured

How to solve these problems?

Remark

(1) Search for the saddle point of the lagrangian $\mathcal{L}(f, \lambda \geq 0)$

- Neyman-Person: $\mathcal{L}(f, \lambda)=\mathbf{P}_{\mathrm{nd}}(f)+\lambda\left(\mathbf{P}_{\mathrm{fa}}(f)-\rho\right)$
- q-value constraint: $\mathcal{L}(f, \lambda)=(1+\lambda q) P_{\text {nd }}(f)+\lambda \mathbf{P}_{\mathrm{fa}}(f)$
(2) Asymmetric Costs (AC) classification: $\min _{f} C_{+} \mathrm{P}_{\mathrm{nd}}(f)+C_{-} \mathrm{P}_{\mathrm{fa}}(f)$
- Costs specification not easy (while dealing with surrogate convex losses)

Problem involved by probability constraints
Find the appropriate costs asymmetry; Non-convexity

Solution

Guide the search by checking the probability constraint

Empirical risk Neyman-Pearson formulation

Estimation of probabilities of error

- Data set $S_{+}=\left\{\left(\mathbf{x}_{i}, y_{i}=1\right)\right\}_{i=1}^{n_{+}}, \quad S_{-}=\left\{\left(\mathbf{x}_{i}, y_{i}=-1\right)\right\}_{i=1}^{n_{-}}$
- Empirical Neyman-Pearson problem

$$
\min _{f} \Omega(f)+C \hat{\mathbf{P}}_{\mathrm{nd}}(f) \quad \text { subject to } \quad \hat{\mathbf{P}}_{\mathrm{fa}}(f) \leq \rho
$$

- Empirical probability errors (0 - 1 errors)

$$
\hat{\mathrm{P}}_{\mathrm{nd}}(f)=\frac{1}{n_{+}} \sum_{i \in S_{+}} \mathbb{I}_{f\left(\mathrm{x}_{i}\right) \leq 0}, \quad \hat{\mathrm{P}}_{\mathrm{fa}}(f)=\frac{1}{n_{-}} \sum_{i \in S_{-}} \mathbb{I}_{f\left(\mathrm{x}_{i}\right) \geq 0}
$$

Using 0-1 errors leads to NP hard problem

Non-convex Neyman-Pearson classifier

Our Proposal

- Non-convex approximation of the 0-1 errors

$$
\hat{\mathbf{P}}_{\mathrm{nd}}(f)=\frac{1}{n_{+}} \sum_{i \in S_{+}} \ell\left(y_{i} f\left(\mathrm{x}_{i}\right)\right), \quad \hat{\mathbf{P}}_{\mathrm{fa}}(f)=\frac{1}{n_{-}} \sum_{i \in S_{-}} \ell\left(y_{i} f\left(\mathrm{x}_{i}\right)\right) .
$$

- Used approximation ℓ depends on the model family (kernel method, deep network) and optimization algorithm

Non-convex Neyman-Pearson classifier

Proposed Algorithms

- Kernel machine (SVM)
- Ramp loss approximation

$$
\ell(z)=\max \left\{0, \frac{1}{2}(1-z)\right\}-\max \left\{0,-\frac{1}{2}(1+z)\right\}
$$

- Remark: non-convex and non-differentiable
- Batch learning for non-linear SVM: tool = DC programming
- Online learning for linear SVM (large scale datasets): tool = stochastic gradient
- Deep network
- Sigmoid loss approximation $\ell(z)=\frac{1}{1+e^{z}}$
- Online learning with stochastic gradient

Proposed Algorithms: General Synopsis

$$
\min _{f \in \mathcal{H}} \Omega(f)+C \hat{\mathbf{P}}_{\mathrm{nd}}(f) \quad \text { s.t. } \quad \hat{\mathbf{P}}_{\mathrm{fa}}(f) \leq \rho
$$

Step0 Augmented Lagrangian at iteration t

$$
\mathcal{L}_{A}\left(f, \lambda \geq 0 ; \lambda_{t}\right)=\Omega(f)+C \hat{\mathbf{P}}_{\mathrm{nd}}(f)+\lambda\left(\hat{\mathbf{P}}_{\mathrm{fa}}(f)-\rho\right)+\frac{1}{\nu}\left(\lambda-\lambda_{t}\right)^{2}
$$

Step1 f fixed \rightarrow force λ to stay at the proximal of λ_{t}

$$
\lambda \leftarrow \max \left\{0, \lambda_{t}+\nu\left(\hat{\mathbf{P}}_{\mathrm{fa}}(f)-\rho\right)\right\}
$$

Step2 For λ fixed, solve the non-convex problem

$$
f \leftarrow \operatorname{argmin}_{f \in \mathcal{H}} \Omega(f)+C \hat{\mathbf{P}}_{\mathrm{nd}}(f)+\lambda \hat{\mathbf{P}}_{\mathrm{fa}}(f)
$$

Batch learning of Neyman-Pearson SVM

Solving Step 2 at iteration t

- $\mathcal{L}=\frac{1}{2}\|f\|_{\mathcal{H}}^{2}+C_{+} \sum_{i \in S_{+}} \ell\left(y_{i} f\left(x_{i}\right)\right)+C_{-} \sum_{i \in S_{-}} \ell\left(y_{i} f\left(\mathbf{x}_{i}\right)\right)-\lambda \rho$ with $C_{+}=C / n_{+}$and $C_{-}=\lambda / n_{-}$
- ℓ is the non-convex Ramp loss function
- Step $2=$ Non-convex Asymmetric Costs SVM
- Apply Multi-stage Convex relaxation using a DC decomposition of ℓ

Batch learning of Neyman-Pearson SVM

- $\ell(z)=\max \left\{0, \frac{1}{2}(1-z)\right\}-\max \left\{0,-\frac{1}{2}(1+z)\right\}=\ell_{1}(z)-\ell_{2}(z)$

- Decomposition of $\mathcal{L}(f, \lambda)=J_{1}(f)-J_{2}(f)$

$$
\begin{aligned}
J_{1}(f) & =\frac{1}{2}\|f\|_{\mathcal{H}}^{2}+\sum_{i} C_{y_{i}} \ell_{1}\left(y_{i} f\left(x_{i}\right)\right), \\
J_{2}(f) & =\sum_{i} C_{y_{i}} \ell_{2}\left(y_{i} f\left(x_{i}\right)\right) \quad \text { where } \quad C_{y_{i}} \in\left\{C_{+}, C_{-}\right\}
\end{aligned}
$$

Batch learning of Neyman-Pearson SVM

Solving Step 2 at iteration t (cont'd)

- Convex majorization of \mathcal{L}

$$
\mathcal{L}_{\text {Conv }}=\frac{1}{2}\|f\|_{\mathcal{H}}^{2}+\sum_{i} C_{y_{i}} \ell_{1}\left(y_{i} f\left(\mathrm{x}_{i}\right)\right)+\sum_{i} C_{y_{i}}\left\langle\nabla_{f} \ell_{2}\left(y_{i} f_{t}\left(\mathrm{x}_{i}\right)\right), f-f_{t}\right\rangle_{\mathcal{H}}
$$

- We obtain classical SVM-like problem
- Solve the Non-convex Asymmetric Costs SVM with DC \equiv solve iteratively SVM-type problem

Solving Neyman-Pearson SVM problem

(1) For λ fixed, solve Non-convex SVM with $C_{+}=C / n_{+}, C_{-}=\lambda / n_{-}$
(2) Update λ according to Neyman-Pearson constraint satisfaction

Online learning of Neyman-Pearson SVM

Algorithm derivation

- Model $f(\mathbf{x})=\langle\mathbf{w}, \mathbf{x}\rangle+b$
- Reformulation of Neyman-Pearson problem

$$
\min _{f} \frac{\lambda_{c}}{2}\|\mathbf{w}\|^{2}+\frac{1}{n_{+}} \sum_{i \in S_{+}} \ell\left(y_{i} f\left(x_{i}\right)\right) \quad \text { s.t. } \frac{1}{n_{-}} \sum_{i \in S_{-}} \ell\left(y_{i} f\left(\mathbf{x}_{i}\right)\right) \leq \rho
$$

- Lagrangian

$$
\mathcal{L}(f, \lambda)=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{\lambda_{c}}{2}\|\mathbf{w}\|^{2}+a_{i} \ell\left(y_{i} f\left(\mathbf{x}_{i}\right)\right)-\lambda \rho\right)
$$

with the coefficients $a_{i}= \begin{cases}n / n_{+} & \forall i \in S_{+} \\ \lambda n / n_{-} & \forall i \in S_{-}\end{cases}$

Online learning of Neyman-Pearson SVM

Algorithm 5 Stochastic algorithm

Initialize λ, \mathbf{w}, b.

repeat

Pick a random training example $\left(x_{t}, y_{t}\right)$
Update \mathbf{w} and b in the following ways

$$
\begin{aligned}
\mathbf{w} & \leftarrow\left(1-\gamma_{t} \lambda_{c}\right) \mathbf{w}-\gamma_{t} a_{t} \nabla_{\mathbf{w}} \ell\left(y_{t} f\left(\mathbf{x}_{t}\right)\right) \\
b & \leftarrow b-\gamma_{t} a_{t} \nabla_{b} \ell\left(y_{t} f\left(\mathbf{x}_{t}\right)\right) \\
\text { If } y_{t}=-1 \text {, set } & \\
\lambda & \leftarrow \max \left(0, \lambda+\nu_{t}\left(\ell\left(y_{t}, f\left(\mathbf{x}_{t}\right)\right)-\rho\right)\right)
\end{aligned}
$$

until convergence

- γ_{t}, ν_{t} : learning rates
- Neyman-Pearson constraint being related to negative samples, update of λ occurs if the current sample has a negative label

Remarks

Straightforward Extensions

- Online algorithm for deep network
- Batch and online algorithms for q-value constraint

$$
\min _{f \in \mathcal{H}} \Omega(f)+C \hat{P}_{\mathrm{nd}}(f) \quad \text { subject to } \quad \hat{\mathrm{P}}_{\mathrm{fa}}(f) \leq q\left(1-\hat{\mathrm{P}}_{\mathrm{nd}}(f)\right)
$$

- Use the lagrangian

$$
\begin{aligned}
\mathcal{L}(f, \lambda) & =\Omega(f)+C \hat{\mathbf{P}}_{\mathrm{nd}}(f)+\lambda\left(\hat{\mathbf{P}}_{\mathrm{fa}}(f)-q\left(1-\hat{\mathbf{P}}_{\mathrm{nd}}(f)\right)\right) \\
& =\Omega(f)+(C+\lambda q) \hat{\mathbf{P}}_{\mathrm{nd}}(f)+\lambda \hat{\mathbf{P}}_{\mathrm{fa}}(f)-\lambda q
\end{aligned}
$$

Performance evaluation: Neyman-Pearson

Compared methods

- Batch Neyman-Pearson (NP-SVM)
- Online Neyman-Pearson(ONP-SVM)
- Convex Asymmetric Costs SVM (AC-SVM)
- Solve a convex SVM with costs $\left(C_{+}, C_{-}\right)$. Check if the solution satisfies Neyman-Pearson constraint, otherwise look for another pair of costs.
- Generative approach (GEN)
- Conditional distribution of each class \equiv Gaussian distribution

Validation criterion

$$
J_{\text {val }}=\hat{\mathbf{P}}_{\mathrm{nd}}+\max \left(0, \hat{\mathbf{P}}_{\mathrm{fa}}-\rho\right) / \rho
$$

Performance evaluation: Neyman-Pearson

Results for nonlinear SVM model (medium scale $\approx 20,000$ samples)

MagicGammaTelescope

- Batch Neyman-Pearson (NP-SVM)
- Convex Asymmetric Costs SVM (AC-SVM)
- Generative approach (GEN)

Performance evaluation: Neyman-Pearson

Results for linear SVM model (medium scale $\approx 20,000$ samples)

- Batch Neyman-Pearson (NP-SVM)
- Online Neyman-Pearson(ONP-SVM)
- Convex Asymmetric Costs SVM (AC-SVM)
- Generative approach (GEN)

Performance evaluation: Neyman-Pearson

Results for linear SVM (large scale $\approx 800,000$ samples)

Table: Performances on test set (19700 positives and 3449 negatives) of RCV1-V2 for different values of ρ. Top row: left) $\rho=0.1 \%$, right) $\rho=0.5 \%$. Bottom Row: left) $\rho=5 \%$ and right) $\rho=10 \%$. Performances are percentages of errors.

	ONP-SVM	AC-SVM
$\hat{\mathbf{P}}_{\mathrm{fa}}$	0.029	0
$\hat{\mathbf{P}}_{\text {nd }}$	$\mathbf{7 6 . 8}$	93.26
	ONP-SVM	AC-SVM
$\hat{\mathbf{P}}_{\mathrm{fa}}$	4.69	5.01
$\hat{\mathbf{P}}_{\mathrm{nd}}$	11.84	$\mathbf{9 . 5 3}$

	ONP-SVM	AC-SVM
$\hat{\mathbf{P}}_{\mathrm{fa}}$	0.31	0.145
$\hat{\mathbf{P}}_{\mathrm{nd}}$	60	$\mathbf{5 9 . 3 5}$
	ONP-SVM	AC-SVM
$\hat{\mathbf{P}}_{\mathrm{fa}}$	10	8.3
$\hat{\mathbf{P}}_{\mathrm{nd}}$	$\mathbf{4 . 6 3}$	7.9

Online NP-SVM (ONP-SVM) is in average 6 times faster than Convex Asymmetric Cost SVM (AC-SVM)

Performance evaluation: q-value

Setup

- Peptides-spectrum matching (PSM) verification
- Goal: identify consistently true positive matchings
- Models investigated : non-linear SVM (qSVMOpt), deep network (qNNOpt)

q	qRanker	qSVMOpt	qNNOpt
0.0025	4,449	4,947	$\mathbf{5 , 0 0 5}$
0.01	5,462	5666	$\mathbf{5 , 7 0 7}$
0.1	7,473	$\mathbf{7 , 9 5 4}$	$\mathbf{7 , 4 9 1}$

Table: Number of true positives correctly identified (over 34,852).

- Learning with probability constraint
- The non-convex formulation leads to better results
- State-of-art results for PSM using q-value
- It is competitive in terms of computation time
- Online learning is strikingly fast ...
... but should be controlled carefully

Outline

(1) Introduction

- General learning problem
- Discussion of convexity and non-convexity of learning problem
- Multi-stage convex relaxation
(2) Case study
- Learning under probability constraint
- Multitask learning

Position of the problem

Brain computer interface Application

- P300 Speller System
- Characteristics: appearance of a deflection in the EEG signals 300 ms (P300) after submitting a subject to a stimulus (visual stimulus)
- This deflection corresponds to an evoked potential (P300) to be detected
- M acquisition channels

Problem setup

Issues

- Identify positive signals (with P300) from negative signals
- Select the useful channels or variables
- Handle the variability of the signals over different sessions and subjects

Workaround

- Define acquisition sessions as (nearly) similar tasks
- Learn jointly the tasks to improve performances
- Joint selection of discriminative features for the tasks

Illustration

$\min _{f_{1}, f_{2} \in \mathcal{H}_{1} \oplus \cdots \oplus \mathcal{H}_{M}} \sum_{t=1}^{2} \sum_{i=1}^{n_{t}} L\left(y_{i}^{(t)}, f_{t}\left(x_{i}^{(t)}\right)\right)+\lambda \quad \Omega\left(f_{1}, f_{2}\right) \quad \begin{gathered}\text { Group sparsit } \\ \text { penalization }\end{gathered}$

Joint sparsity penalization

- Two tasks with $f_{1}(x)=\left\langle\mathbf{w}_{1}, \mathbf{x}\right\rangle+b_{1}$ and $f_{2}(x)=\left\langle\mathbf{w}_{2}, \mathbf{x}\right\rangle+b_{2}$
- Penalization

$$
\Omega\left(f_{1}, f_{2}\right)=\sum_{j} \mathbb{I}_{\mathbf{w}_{1, j} \neq 0} \wedge \mathbf{w}_{2 . j} \neq 0
$$

NP hard!

- Relaxation using mixed-norm $\|\cdot\|_{p, q}$

$$
\begin{aligned}
\Omega_{p, q}\left(f_{1}, f_{2}\right) & =\sum_{j} \sum_{t=1}^{2}\left(\left(\left|\mathbf{w}_{t, j}\right|^{q}\right)^{1 / q}\right)^{p} \\
& =\sum_{j}\left(\|\mathbf{W}(:, j)\|_{q}\right)^{p} \quad \text { with } \quad \mathbf{W}=\left[\begin{array}{ll}
\mathbf{w}_{1} & \mathbf{w}_{2}
\end{array}\right]^{\top}
\end{aligned}
$$

- $\|\mathbf{W}(:, j)\|_{q}$ encodes relation between tasks (if it is small, variable j is irrelevant for both tasks)
- ℓ_{p}-norm encodes joint sparsity level
- $0<p<1$ enforces sparsity but problem is non-convex

Joint sparsity penalization: non-linear case

- Three kernel spaces \mathcal{H}_{m}, with kernels k_{m}
- Decision function $f_{t}(x)$

$$
f_{t}(x)=f_{t, 1}(x)+f_{t, 2}(x)+f_{t, 3}(x)+b_{t} \quad \text { with } \quad f_{t, m} \in \mathcal{H}_{m}
$$

- Penalization

$$
\Omega_{p, q}\left(f_{1}, f_{2}\right)=\sum_{m=1}^{3}\left(\sum_{t=1}^{2}\left\|f_{t, m}\right\|_{\mathcal{H}_{m}}^{q}\right)^{p / q}=\sum_{m=1}^{3}\left(\left\|f_{\cdot, m}\right\|\right)^{p}
$$

- $\left\|f_{t, m}\right\|=\left(\sum_{t=1}^{2}\left\|f_{t, m}\right\|_{\mathcal{H}_{m}}^{q}\right)^{1 / q}$ measures the importance of kernel k_{m} across the tasks.

Multiple kernel Multi-task Learning

Optimization problem: general case

$$
\min _{f_{1}, \cdots, f_{T} \in \mathcal{H}_{1} \oplus \cdots \oplus \mathcal{H}_{M}} \sum_{t=1}^{T} \sum_{i=1}^{n_{t}} L\left(y_{i}^{(t)}, f_{t}\left(x_{i}^{(t)}\right)\right)+\lambda \Omega_{p, q}\left(f_{1}, \cdots, f_{T}\right)
$$

with $\Omega_{p, q}\left(f_{1}, \cdots, f_{T}\right)=\sum_{m=1}^{M}\left(\sum_{t=1}^{T}\left\|f_{t, m}\right\|_{\mathcal{H}_{m}}^{q}\right)^{p / q}$

Elements of solution

- Convex case $(p=1)$: equivalent penalization with $s=(2-q) / q$

$$
\Omega_{p, q}\left(f_{1}, \cdots, f_{T}\right)^{2}=\min _{d_{t, m} \geq 0} \sum_{m=1}^{M} \frac{\left\|f_{t, m}\right\|^{2}}{d_{t, m}} \quad \text { s.t } \quad \sum_{m}\left(\sum_{t} d_{t, m}^{1 / s}\right)^{s} \leq 1
$$

- Efficient solvers exist (multiple kernel learning)

Multiple kernel Multi-task Learning

Optimization problem: general case

$$
\min _{f_{1}, \cdots, f_{T} \in \mathcal{H}_{1} \oplus \cdots \oplus \mathcal{H}_{M}} \sum_{t=1}^{T} \sum_{i=1}^{n_{t}} L\left(y_{i}^{(t)}, f_{t}\left(x_{i}^{(t)}\right)\right)+\lambda \Omega_{p, q}\left(f_{1}, \cdots, f_{T}\right)
$$

with $\Omega_{p, q}\left(f_{1}, \cdots, f_{T}\right)=\sum_{m=1}^{M}\left(\sum_{t=1}^{T}\left\|f_{t, m}\right\|_{\mathcal{H}_{m}}^{q}\right)^{p / q}$

Elements of solution

- Non-Convex case $(0<p<1)$ for enhanced sparsity
- Use Multi-Stage Convex Refinements
- Notice that $\Omega_{p, q}\left(f_{1}, \cdots, f_{T}\right)=\sum_{m=1}^{M} g(\|f, m\|)$ with $g(u)=|u|^{p}$
- Convex relaxation at iteration $t: g(u) \leq p\left|u_{t}\right|^{p-1}|u|+(1-p)\left|u_{t}\right|^{p}$

Application on BCI data

- 9 subjects $\rightarrow 9$ tasks
- 256 features, training sets of size $n=300$

	MTL $_{1,2}$	MTL $_{p, 2}$	MTL $_{1, q}$	SepSVM	Sep ℓ_{1} SVM
AUC	$\mathbf{7 6 . 5} \pm \mathbf{0 . 6}$	76.1 ± 0.5	76.5 ± 0.6	75.6 ± 0.8	73.4 ± 1.3
\# Var	191 ± 26	134 ± 33	201 ± 23	256	$\mathbf{1 1 8} \pm \mathbf{3 0}$

SepSVM: tasks are trained separately using classical SVM
Sep ℓ_{1} SVM: tasks are trained separately using penalised ℓ_{1}-norm SVM

Application on Multiclass problem

- Proteins classification
- Tasks: pairwise binary classification in 1-vs-all fashion
- Two datasets
- Dataset 1: PSORT+ (4 classes, 541 samples)
- Dataset 2 : PSORT- (5 classes, 1444 samples)
- Initial number of kernels: 69

Data	$\mathrm{MTL}_{1,2}$	$\mathrm{MTL}_{p, 2}$	$\mathrm{MTL}_{1, q}$	MCMKL
PSORT +	93.87 ± 2.82	93.62 ± 3.04	93.88 ± 2.73	93.8
\# Kernels	15.4 ± 1.17	7.4 ± 1.42	15.9 ± 1.05	18
PSORT -	95.92 ± 1.35	95.90 ± 1.12	96.02 ± 1.33	96.1
\# Kernels	12.9 ± 0.31	7.5 ± 0.85	12.8 ± 0.42	14

- Group sparsity based on kernels and using mixed-norm
- Sharing information across tasks helps
- Non-convex solutions: better or similar performances with reduced complexity
- Why does it work ?
- Convex approaches provide sub-optimal solutions when dealing with sparsity
- Non-convex penalizations can alleviate these drawbacks
- They trade convexity for enhanced sparsity
- Some theoretical guarantees are emerging (at least for regression) [Zhan 2010]

References

[Coll 2006] R. Collobert, F. Sinz, J. Weston, and L. Bottou. "Trading convexity for scalability". In: Proceedings of the 23rd international conference on Machine learning (ICML 2006), pp. 201-208, Pennsylvania, USA, 2006.
[Wu 2010] T. T. Wu and K. Lange. "The MM Alternative to EM". Statistical Science, Vol. 25, No. 4, pp. 492-505, 2010.
[Zhan 2010] T. Zhang. "Analysis of Multi-stage Convex Relaxation for Sparse Regularization". Journal of Machine Learning Research, Vol. 11, pp. 1081-1107, March 2010.
[Tao, 1998] P. D. Tao and L. T. H. An. "DC optimization algorithms for solving the trust region subproblem". SIAM Journal of Optimization, Vol. 8, No. 2, pp. 476-505, 1998.

