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At a glance

I Sparse high dimensional
problems

� Signal denoising

� Compressive sensing

� Bioinformatics . . .

minw 1
2‖y − Xw‖2 + λΩ(‖w‖)

Contribution
I Screening rules

� Safely set wj = 0 with few computation burden

I Speeding up Lasso solvers with non convex regularization
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Context



Sparse Least squares

minw∈Rd
1
2‖y − Xw‖2 + λ ‖w‖0

I y ∈ Rn: observations

I X = [x1, . . . , xd ] ∈ Rn×d : design matrix, d features

I λ > 0: trade-off parameter between data-fit and regularization

Sparsity by the counting pseudo-norm

1. Ω(w) =
∑d

j=1 Iwj 6=0

2. Number of non-zeros components of w
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Sparse Least squares

minw∈Rd
1
2‖y − Xw‖2 + λ ‖w‖0

I y ∈ Rn: observations

I X = [x1, . . . , xd ] ∈ Rn×d : design matrix, d features

I λ > 0: trade-off parameter between data-fit and regularization

Convex relaxation
I `1-norm Ω(w) = ‖w‖1
I Leading to Lasso problem
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Lasso basics



Solving the Lasso : Cyclic Coordinate Descent

min
w∈Rd

P(w) , 1
2‖y −

d∑
j=1

xjwj‖22 + λ

d∑
j=1

|wj |

Algorithm 1: Cyclic CD

Initialization: w0 = 0;
for t = 1, · · · ,T do

w t
1 ← argminw1∈R P(w1, w

t−1
2 , · · · ,w t−1

d−1, w
t−1
d ) ;

w t
2 ← argminw2∈R P(w t

1 , w2 , · · · ,w t−1
d−1, w

t−1
d ) ;

... ;
w t
d ← argminwd∈R P(w t

1 , w
t
2 , · · · ,w t−1

d−1, wd);
end
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Coordinate-wise update

Soft thresholding

wj ← ST

(
λ

‖xj‖2
,wj +

x>j (y − Xw)

‖xj‖2

)

ST(τ, z) = max(0, 1− τ/|z |) z

I Easy computation

I O(n) operations for an update
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Benefit of Lasso

w? = argminw∈Rd
1
2‖y −

d∑
j=1

xjwj‖22 + λ

d∑
j=1

|wj |

Key property
I Sparse solution w? is expected

I Let Sw? =
{
j = 1, · · · , d w?

j 6= 0
}

the (small) support of
w?

I For large λ: |Sw? | = p � d

Holy grail
I Identify beforehand Sw?

I Leverage on it to solve a reduced problem

w?
Sw? = argminω∈Rp

1
2‖y − XSw?ω‖22 + λ‖ω‖1 6



Accelerate Lasso solving

Approaches
I Screening: remove parameter j whenever it is

certified that j 6∈ Sw?

I Active set: identify parameters j likely in Sw?

Issue
How to identify Sw? or subset of it ?

=⇒ Exploit the dual of Lasso and its optimality condition
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Optimality condition

w? = argminw∈Rd
1
2‖y −

d∑
j=1

xjwj‖22 + λ

d∑
j=1

|wj |

Subgradient of |w |

∂w |w | =

{
[−1, 1] if w = 0
{sign(w)} if w 6= 0

Necessary and sufficient optimality condition

∀j ∃gj ∈ ∂w |wj |, x>j (y − Xw)− λgj = 0

I Screening condition: owing to definition of gj

|x>j (y − Xw?)| < λ ⇒ w?
j = 0 8



Dual of Lasso

The dual

max
θ∈Rn

D(θ) , 1
2‖y‖

2
2 − 1

2‖y/λ− θ‖
2
2

s.t. |x>j θ| ≤ 1 ∀j = 1, · · · , d

θ? = solution of the projection of y/λ onto a polyhedral

Primal dual link
θ? = (y − Xw?)/λ

θ is the scaled residual

Screening rule

|x>j θ?| < λ ⇒ wj = 0

Useless rule as we still not know w? 9



Safe screening rule

A proxy to the screening rule
I Find a region C ∈ Rn containing θ?

I If supθ∈C |x>j θ| < 1 ⇒ |x>j θ
?| <

1 ⇒ w?
j = 0

Choice of C
I C is a ball of center c ∈ Rn and radius ρ > 0

I Simple solution: supθ∈C |x>j θ| = |x>j c|+ ρ‖xj‖2

Safe screening test

if |x>j c|+ ρ‖xj‖2 < λ ⇒ w?
j = 0

Computation requirement: O(n)
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Review of Lasso screening rules

I To get a practical and useful rule
� choose c close to θ?

� choose the radius ρ as small as possible

I Leading to different screening rule

Static rule El Ghaoui et al. (2012)

c = y/λ, ρ = ‖y/λ− y/λmax‖

λmax = ‖X>y‖∞ is the maximal cor-
relation
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Review of Lasso screening rules

I To get a practical and useful rule
� choose c close to θ?

� choose the radius ρ as small as possible

I Leading to different screening rule

Dynamic rule Bonnefoy et al. (2014)

c = y/λ, ρ = ‖θk − y/λmax‖

θk = (y−wk)/αk is a feasible scaled
residual
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Review of Lasso screening rules

I To get a practical and useful rule
� choose c close to θ?

� choose the radius ρ as small as possible

I Leading to different screening rule

Duality Gap safe rule Fercocq et al.
(2015)

c = θk , ρ =

√
2Gap(P(wk)− D(θk))

θk = (y−wk)/αk is a feasible scaled residual,

Gap(P(w)− D(θ)) is the duality gap (stop-

ping criterion of a lasso solver)
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Lasso with Gap screening rule

Algorithm 2: Cyclic CD with screening

Initialization: w0 = 0, t=0 ;
repeat

if t mod F = 0 then
Design feasible residual θt ;
Set ρ =

√
2Gap(P(wt)− D(θt) ;

Screen safely parameters wj = 0 ;
end
foreach ` ∈ Sŵ (not screeneed out) do

w t
` ← argminw`∈R P(w t

1 , · · ·, w` , · · · ,w t−1
d−1, w

t−1
d ) ;

end
t = t + 1 ;

until Gap(P(wt)− D(θt) < ε;
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Lasso screening rule in play

Leukemia dataset

d

n
= 7129

72
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Non-convex Lasso



Why non-convex Lasso?

I Lasso tends to select larger support Sŵ (more parameters than
needed)

I Remedy: use non-convex approximation of the sparsity ‖w‖0
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Issues of non-convex Lasso

w? = argminw∈Rd
1
2‖y −

d∑
j=1

xjwj‖22 + λ

d∑
j=1

Ω(|wj |)

Issues
I Non-convex relaxations promote better sparsity. . .

I but their optimization is more challenging

I How to design screening rules as in the convex Lasso case?
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Adopted optimization approach

w? = argminw∈Rd
1
2‖y − Xw‖22 + λ

d∑
j=1

Ω(|wj |)

Assumption

I Ω is concave, lower semi-continuous, differentiable on [0, ∞)

I Leading to a convex surrogate

Ω(|wj |) ≤ Ω(|w ′
j |) + Ω′(|w ′

j |)
(
|wj | − |w ′

j |
)

Majorization-Minimization Kang et al. (2015)

I At iteration t we assume knowing a wt

I Next iterate is obtained by

min
w∈Rd

1
2
‖y − Xw‖22 +

1
2α
‖w −wt‖22 + λ

d∑
j=1

Ω′
λ(|w t

j |)|wj | , 16



Our MM algorithm

Algorithm 3: MM algorithm
Initialization: w0 = 0, t=0, set α > 0 ;
repeat

for j = 1, · · · , d do
compute λj = λ Ω′

λ(|w t
j |) ;

end
Solve the Proximal Weighted Lasso problem ;
minw∈Rd

1
2‖y − Xw‖22 + 1

2α‖w −wt‖22 +
∑d

j=1 λj |wj | ;
t = t + 1 ;

until convergence;

Speeding up this solver
I Design screening rule for the Weighted Lasso

I Ensure screened out parameters remain at zero across MM
iterations
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Screen Proximal Weighted Lasso

Dual problem

max
θ∈Rn

β∈Rd

D(θ,β) , −1
2
‖θ‖22 −

α

2
‖β‖22 + θ>y − β>wt

s.t. |x>j θ − βj | ≤ λj ∀j

I Primal-dual link: y − Xw = θ w −wt = β

Screening from optimality condition

|x>j θ
? − β?j | < λj =⇒ w?

j = 0

I Unhelpful rule as it requires the optimal solution

I Effective screening rule: find an upper bound γj such that

|x>j θ
? − β?j | < γj < λj =⇒ w?

j = 0 18



Machinery of our screening rule

I Let (ŵ, θ̂, β̂) with θ̂ and β̂ being dual feasible, a primal-dual
solution

I We can get a first upper bound

|x>j θ
? − β?j | = |x>j θ̂ − β̂j + x>j (θ? − θ̂)− (β?j − β̂j)|

≤ |x>j θ̂ − β̂j |+ ‖xj‖ ‖θ
? − θ̂‖+ |β?j − β̂j |

I Get rid of the optimal solution θ? and β?: use duality gap

‖θ̂ − θ?‖22 + α‖β̂ − β?‖22 ≤ 2(P(ŵ)− D(θ̂, β̂))

I All together

|x>j θ̂ − β̂j |+
√

2gap(ŵ, θ̂, β̂)
(
‖xj‖+

1
α

)
︸ ︷︷ ︸

T
(λj )

j (ŵ,θ̂, ˆβ)

< λj =⇒ wj = 0
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Proximal Weighted Lasso with Gap screening rule

Algorithm 4: Cyclic PWL with screening
Inputs : X,wt , {λj} ,w0, α ;
Initialization: k = 0 ;
repeat

if k mod F = 0 then
Design feasible dual variables θk and θk ;
Compute the duality gap ;
Screen safely parameters wj = 0 ;

end
foreach ` ∈ Stŵ (not screeneed out) do

update wj coordinate-wisely ;
end
k = k + 1 ;

until convergence;
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Propagation of screened set

Algorithm 5: MM algorithm with screening
Initialization: w0 = 0, t=0, set α > 0 ;
for t = 1, · · · ,T do

for j = 1, · · · , d do
compute λtj = λ Ω′

λ(|w t
j |)

end
Solve the Proximal Weighted Lasso problem ;
wt+1,St+1

w ← ScreeningCyclicPWL
(
X, y,

{
λtj
}
,wt , α

)
end

Remarks

I Λt =
{
λtj
}
changes at each MM iteration! =⇒ St+1

w changes
across iterations

I Can we guarantee that some parameters wj screened out at
iteration t remained screened at t + 1?
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Propagation of screened set

Algorithm 6: MM algorithm with screening
Initialization: w0 = 0, t=0, set α > 0 ;
for t = 1, · · · ,T do

for j = 1, · · · , d do
compute λtj = λ Ω′

λ(|w t
j |)

end
if t mod K then

Propagate screened set
end
Solve the Proximal Weighted Lasso problem ;
wt+1,St+1

w ← ScreeningCyclicPWL
(
X, y,

{
λtj
}
,wt , α

)
end

Alleluia (maybe a hype?)

I We can propagate screened variables by checking

T
(λt

j )

j (ŵ, θ̂, β̂) + c1‖xj‖+ c2 ≤ λt+1
j =⇒ wj = 0 21



Evaluation



Empirical evaluation

Synthetic problem
y = Xw + ε

Regularization : Ω(w) =
∑d

j=1 log(|wj |+ η)

Comparing running time for regularization path computation
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Empirical evaluation (continued)

Benefit of screening set propagation
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Empirical evaluation (end)

Real world datasets
(Left) Leukemia with n = 50, d = 7129,
(Right) Newsgroup with n = 961 and d = 21319
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To sum up

I We address Lasso problem with non-convex regularization

I Design efficient screening rules
� Screening rule for inner Majorization-Minimization Lasso
� Propagation of the screening conditions

I Benefit: speed up of non-convex Lasso solver

I Future work
� Under which condition the propagation rule is efficient?
� Extension to other learning problem
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