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At a glance

» Sparse high dimensional
problems

m Signal denoising

m Compressive sensing

m Bioinformatics . ..

miny  3lly = Xw[? + AQ(|lw]])

Contribution
» Screening rules

m Safely set w; = 0 with few computation burden

» Speeding up Lasso solvers with non convex regularization



Context



Sparse Least squares

min,egs  3lly —Xwl® + A fwllo

> y € R": observations
> X =[xq,...,xq] € R™: design matrix, d features

» A\ > 0: trade-off parameter between data-fit and regularization

Sparsity by the counting pseudo-norm
d
L Qw) = Zj:l Tw;0

2. Number of non-zeros components of w



Sparse Least squares

min,ers  3lly = Xwl> + A fwlo

> y € R": observations
> X =[x1,...,xq] € R™: design matrix, d features

» A\ > 0: trade-off parameter between data-fit and regularization

Convex relaxation
» (1-norm Q(w) = ||w||;

Penalty Q(w)

» Leading to Lasso problem

|0 penalty
_I‘ penalty
(convex problem) 0

-1 0 1
Parameter w




Lasso basics



Solving the Lasso : Cyclic Coordinate Descent

d d
min P(w) 2 Ly = S w3+ A3 gl
weRd = =

Algorithm 1: Cyclic CD
Initialization: w® = 0:
fort=1,---,T do

t H t—1 t—1 t—1
wi <= argmin,, cg P(wi, wy o owy g wy )

t . t t—1 t—1y .
wy <= argmin,, cg P(wi, wo - w1, w, ),

t . t t t—1 .
Wy <= argmin,, . cr P(Wla Wy o s Wy 1y Wd)'

end




Coordinate-wise update

Soft thresholding

x! (y — Xw v
WJ'(—ST >\2,WJ'+ J(y )
[l

T Z(i)

ST(r,z) = max(0,1 —7/|z|) z

» Easy computation

» O(n) operations for an update



Benefit of Lasso

d d
w* = argmin,cra 3y — > xwil3 + A [l
j=1 j=1

Key property
» Sparse solution w* is expected

> Let Sy = {j =1--,d w'# O} the (small) support of

w*

» Forlarge \: |Sw+|=p < d

Holy grail
» Identify beforehand Sy

> Leverage on it to solve a reduced problem

ws = argmingcpe 3y — Xs, w3 + Alwll1



Accelerate Lasso solving

Approaches

» Screening: remove parameter j whenever it is ,,g)
certified that j & S+

> Active set: identify parameters j likely in Sy«

Issue
How to identify Sy« or subset of it ?

— Exploit the dual of Lasso and its optimality condition



Optimality condition

d d

w* = argmingcra 3y — > xjwil3 + A |wl
= =1

T6|w|
1

Subgradient of |w|

awrw\:{ 1,1 f w=0

{sign(w)} if w#0

N
Necessary and sufficient optimality condition

Vj 3g; € Ow|wjl, xJT(y —Xw) — A\gj =0

» Screening condition: owing to definition of g;

X (y = Xwh)| <A = w=0 8



Dual of Lasso

The dual

1 1
max D(8) = 3llyll3 — 2lly/A — 613

st [x/0|<1 Vj=1,---.d

0™ = solution of the projection of y/\ onto a polyhedral

Primal dual link
0" = (y — Xw*)/A

0 is the scaled residual
Screening rule
T pg* o
x; 0| <A = w;=0

Useless rule as we still not know w* 9



Safe screening rule

A proxy to the screening rule
» Find a region C € R” containing 6*
> If supgec |xj—-r0| <1l = |XJT9*| <

1 = WJ-*:O

Choice of C
» C is a ball of center c € R” and radius p > 0

» Simple solution: supgee |ij0| = |xJ-Tc| + plx;ll2
Safe screening test

if ]xJ-Tc| +ollxill2<A = w =0

Computation requirement: O(n)
10



Review of Lasso screening rules

» To get a practical and useful rule
m choose c close to 6*
m choose the radius p as small as possible

» Leading to different screening rule

Static rule El Ghaoui et al. (2012)

c=y/A  p=y/A=y/Amaxll

Amax = ||XTy||oo is the maximal cor-

relation

11



Review of Lasso screening rules

» To get a practical and useful rule

m choose ¢ close to 6*
m choose the radius p as small as possible

» Leading to different screening rule

Dynamic rule Bonnefoy et al. (2014)
c=y/A  p=16"—y/ Amal

0 = (y — wk)/aX is a feasible scaled

residual

11



Review of Lasso screening rules

» To get a practical and useful rule

m choose c close to 8*
m choose the radius p as small as possible

» Leading to different screening rule

Duality Gap safe rule Fercocq et al.
(2015)

€= Bler)  r= 00, 000/A°

M, (%)

c=0%  p=1/2Gap(P(wk) - D(6"))

0 = (y—w¥)/a* is a feasible scaled residual,
Gap(P(w) — D(0)) is the duality gap (stop-

ping criterion of a lasso solver)

11



Lasso with Gap screening rule

Algorithm 2: Cyclic CD with screening

Initialization: w® = 0, t=0 ;

repeat

if t mod F = 0 then
Design feasible residual 8* ;
Set p = v/2Gap(P(w?) — D(0?) ;
Screen safely parameters w; =0 ;

end
foreach ¢ € Sy, (not screeneed out) do
‘ Wét A argminWeGR P(Wltv"'a Wg o 7W§:%= Wéil) ;
end
t=t+1;

until Gap(P(w?) — D(6") < ¢;

12



Lasso screening rule in play
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Non-convex Lasso




Why non-convex Lasso?

» Lasso tends to select larger support Sy (more parameters than
needed)

» Remedy: use non-convex approximation of the sparsity ||w/||o

Penalty Q(w)

0
Parameter w

Log (7): Q(w) = X, log(|wj| + 1) ,
SCAD (?) 14



Issues of non-convex Lasso

d d
w* = argmingcga 31y — > xiwil3 + A Q(lwyl)
= =i

Issues
» Non-convex relaxations promote better sparsity. . .

» but their optimization is more challenging

» How to design screening rules as in the convex Lasso case?

15



Adopted optimization approach

d

w* = argmin,,cza 3lly — Xwlj3 + A Q(|wj|)
j=1

Assumption
» Q is concave, lower semi-continuous, differentiable on [0, oo)

» Leading to a convex surrogate
QIw]) < Q(Iwj1) + Q' (Iw]1) (Iw;] — [w]])
Majorization-Minimization Kang et al. (2015)
» At iteration t we assume knowing a w'
» Next iterate is obtained by

d
1 2, 1 2
i Iy = Xl 5w = w33 (Dl 16



Our MM algorithm

Algorithm 3: MM algorithm
Initialization: w® = 0, t=0, set a >0 ;
repeat
forj=1,---,d do
‘ compute \; = A Q) (|wf]) ;
end
Solve the Proximal Weighted Lasso problem ;
. d
Minyegs 3[ly — Xw([3 + 5 [lw — w3 + 37, Ajfw;
t=t+1;

until convergence;

Speeding up this solver
» Design screening rule for the Weighted Lasso

» Ensure screened out parameters remain at zero across MM

iterations
17



Screen Proximal Weighted Lasso

Dual problem
a Lypo oo T Tt
max D9, 8) 2 303 - SI3+6Ty 6w

st. [x/0—8,| <)\ V)

» Primal-dual link: y —Xw =0 w-w!=p3
Screening from optimality condition

X 6" —Bf| <\ = w} =0

» Unhelpful rule as it requires the optimal solution

» Effective screening rule: find an upper bound ~; such that

18
X[ 6" — B <y <X = wf =0



Machinery of our screening rule

A A

> Let (W,8,3) with 8 and 3 being dual feasible, a primal-dual
solution

» We can get a first upper bound
%7 0" — 87| = 1%/ 0 — B; + %/ (0" — 8) — (87 — B))]
< %0 =Bl +IIx;ll 16" — 8l + 18] — B
» Get rid of the optimal solution 8* and B*: use duality gap
16— 6713 + all3 — B3 < 2(P(W) — D(®, B))
» All together

A A 1
%76 — B3|+ 1/ 2gap(, 8, B) (IIxi | + ) <X = w; =0

()
J

m>
@

(W,

)

19



Proximal Weighted Lasso with Gap screening rule

Algorithm 4: Cyclic PWL with screening
Inputs : X, wt, {\;},wO o ;
Initialization: k =0 ;
repeat
if k mod F = 0 then
Design feasible dual variables 8% and 6* ;
Compute the duality gap ;

Screen safely parameters w; =0 ;
end
foreach ¢ € S}, (not screeneed out) do
update w; coordinate-wisely ;
end
k=k+1;

until convergence;

20



Propagation of screened set

Algorithm 5: MM algorithm with screening

Initialization: w® = 0, t=0, set a >0 ;
fort=1,---,T do

forj=1,--- ,ddo

| compute Af = A Q) (|w|)

end

Solve the Proximal Weighted Lasso problem ;

wirl SEF « ScreeningCyclicPWL(X, y, {Aj} wh a)
end

Remarks
» A*= {\}} changes at each MM iteration! = S5 changes
across iterations

» Can we guarantee that some parameters w; screened out at
iteration t remained screened at t + 17

21



Propagation of screened set

Algorithm 6: MM algorithm with screening

Initialization: w® = 0, t=0, set a >0 ;
fort=1,---,T do
forj=1,---,ddo

| compute Af = A Q) (|w|)
end

if t mod K then
| Propagate screened set

end
Solve the Proximal Weighted Lasso problem ;
wit SEFL « ScreeningCyclicPWL(X,y, {\{} ,w*, )

end

Alleluia (maybe a hype?)
» We can propagate screened variables by checking

A n A 2
Tj y (W707B)+C]_||Xj||—|—cz S)\;—o—l — w=0 .



Evaluation




Empirical evaluation

Synthetic problem
y=Xw-+e

Regularization : Q(w) = Zle log(|w;| + 1)
Comparing running time for regularization path computation
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Empirical evaluation (continued)

Benefit of screening set propagation
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Empirical evaluation (end)

Real world datasets
(Left) Leukemia with n =50, d = 7129,
(Right) Newsgroup with n =961 and d = 21319
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» We address Lasso problem with non-convex regularization
» Design efficient screening rules
m Screening rule for inner Majorization-Minimization Lasso
m Propagation of the screening conditions
» Benefit: speed up of non-convex Lasso solver
» Future work

m Under which condition the propagation rule is efficient?
m Extension to other learning problem

25
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