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Introduction

Introduction

General learning problem

Dataset S = {(xi , yi ) ∈ X × Y}Ni=1

Learn a functional relation f : X → Y

minf ∈ C L(f ,S) + λ Ω(f )

fitting error regularization term

C ⊆ H: space of functions

Common issues
Choice of the loss function
Specification of the regularization term
Optimization algorithm
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Introduction

Loss function and regularization

Loss function
Regression
Classification
Matrix factorization
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0−1 Loss

Hinge Loss

Logistic Loss

Quadratic Loss

Regularization
Avoid model overfitting
Control model complexity

Encode a priori information
Enforce properties as
smoothness or sparsity
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Introduction Sparsity

Sparsity

Occam’s Razor principle: do not multiply entities beyond need
Tremendous stream of research
Many practical applications

Signal denoising
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Introduction Sparsity

Sparsity

Occam’s Razor principle: do not multiply entities beyond need
Tremendous stream of research
Many practical applications

Feature selection
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Introduction Sparsity

Sparsity

Sparse Learning problem

Desired model f depends on parameter vector w ∈ Rd

Simple sparse learning problem

minw L(w) + λ ‖w‖0

Counting norm

1 Count: Ω(w) =
∑d

j=1 Iwj 6=0

2 Number of non-zeros components of w
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Introduction `0 penalty and its relaxations

Algorithms

Solving methods

Matching Pursuit and variants [Mallat and Zhang, 1993, Davis et al., 1997]

Forward-backward selection

Iterative hard thresholding [Blumensath and Davies, 2008, Attouch et al.,
2013]

Gradient hard thresholding pursuit [Yuan et al., 2013]

Applications

Compressive sensing, dictionary learning

For sparse regression, applications come with exact recovery properties

Classification [Lozano et al., 2011]

Matrix factorizations [Wang et al., 2014]
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Introduction `0 penalty and its relaxations

Relaxation of counting norm

Convex relaxation
`1-norm Ω(w) = ‖w‖1
Leading to Lasso problem in
sparse regression
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Leads to convex optimization for convex loss function L(w)

Sparsity recovery of a signal over atoms
{
φ(xi ) ∈ Rd}N

i=1
J = {j ,wj 6= 0}: support of the signal to be recovered. Lasso is sign
consistent iff ‖ΦJcJΦ

−1
JJ sign(wJ)‖∞ ≤ 1, Φ = IE{φ(xi )φ(xi )

>}

However
Lasso tends to select larger support J
A remedy: use more appropriate approximation of ‖ · ‖0
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Introduction `0 penalty and its relaxations

Relaxation of counting norm: non-convex approximations

1 Bridge [Frank and Friedman, 1993] : Ω(w) =
∑d

j=1 |wj |p, p ∈ (0, 1)

2 Log [Candes et al., 2008] : Ω(w) =
∑d

j=1 log(|wj |p + ε),

3 Capped `1 [Zhang, 2008] : Ω(w) =
∑d

j=1 min (η, |wj |)
4 SCAD [Fan and Li, 2001]
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Introduction `0 penalty and its relaxations

Relaxation of counting norm: non-convex approximations
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Raised issues
Choice of the penalty
Optimization methods
Statistical guarantees
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Introduction `0 penalty and its relaxations

Optimization approaches

Coordinate wise optimization [Mazumder et al., 2011, Breheny and Huang,
2011]

Active set methods [Jiao et al., 2013]

Regularization path (SCAD and MCP) [Breheny and Huang, 2011]

DC algorithm [Gasso et al., 2009]

Proximal methods [Gong et al., 2013, Rakotomamonjy et al., 2014]
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Elements of DC programming

Difference of convex approach
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Elements of DC programming DC function and properties

Recall General problem

Learning problem

Let the objective function J(w) = L(w) + λΩ(w)

Optimization problem

min
w∈Rd

J(w)

Difference of Convex (DC) Approach

Dates to early 90’s [Tao et al., 1988, Tao and Le Thi Hoai, 1994]

Many further improvements (theory and algorithm) and applications
Requires J(w) to be a Difference of Convex functions
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Elements of DC programming DC function and properties

Difference of Convex functions
DC function

Let J1(w), J2(w) : C →]−∞, +∞] two convex, proper and lower
semi-continuous functions
J(w) is a DC function if it can be expressed as J(w) = J1(w)− J2(w).
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Elements of DC programming DC function and properties

Properties of DC functions

Non-uniqueness of a DC decomposition

Let J(w) = J1(w)− J2(w) a DC function

Let g(w) a convex, proper and lsc function

J can be expressed as J(w) = (J1(w) + g(w))− (J2(w) + g(w))

Linear combination
Let Jk(w) = Jk,1(w)− Jk,2(w), k = 1, · · · ,M being DC functions

Any function
∑M

k=1 βkJk(w) with βk ∈ R is a DC function
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Elements of DC programming DC function and properties

Properties of DC functions
Convex majorization

Let ∂J2(wt) =
{
αt ∈ Rd , J2(w) ≥ J2(wt) + 〈w −wt ,αt〉, ∀w ∈ Rd}

the subdifferential of J2 at wt .
A convex majorization function of J(w) = J1(w)− J2(w) at wt is

J(w) ≤ J1(w)− J2(wt)− 〈w −wt ,αt〉
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Elements of DC programming DC algorithm

DC Algorithm

Principle: successive convex relaxations
At each iteration t, define the convex majorization function

Jcvx(w) = J1(w)− J2(wt)− 〈w −wt ,αt〉 with αt ∈ ∂J2(wt)

Next solution: wt+1 = argminw Jcvx(w)

Algorithm for solving minw J1(w)− J2(w)

Set t = 0, initialize wt ∈ domJ1
repeat

Select αt ∈ ∂J2(wt)

Define Jcvx(w) and solve wt+1 = argminw Jcvx(w)

t = t + 1

until convergence
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Elements of DC programming DC algorithm

Convergence

Main Results
Assume J(w) = J1(w)− J2(w) a coercive function with J1, J2, lsc proper
convex functions such as domJ1 ⊆ domJ2. It holds

the sequence {wt} is well defined or equivalently dom ∂J1 ⊆ dom ∂J2

the sequence {J(wt)} is monotonically decreasing

if the minimum of J is finite, every limit point ŵ of the bounded
sequence {wt} (J being coercive) is a critical point of J and satisfies
the local optimality condition
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Elements of DC programming DC algorithm

Convergence

Decrease of the objective function

Establish that J1(wt+1)− J2(wt+1) ≤ J1(wt)− J2(wt) for all t

αt ∈ ∂J2(wt) = {α, J2(w) ≥ J2(wt) + 〈w −wt ,αt〉} implies:

−J2(w) ≤ −J2(wt) + 〈wt −w,αt〉 ∀w, hence

−J2(wt+1) ≤ −J2(wt) + 〈wt −wt+1,αt〉

J1(wt+1)− J2(wt+1) ≤ J1(wt+1)− J2(wt) + 〈wt −wt+1,αt〉 (i)

wt+1 = argminwJ1(w)− J2(wt)− 〈w −wt ,αt〉 leads to

J1(wt+1)− J2(wt) + 〈wt −wt+1,αt〉 ≤ J1(wt)− J2(wt) (ii)

(i) and (ii) imply the desired result J(wt+1) ≤ J(wt)
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Elements of DC programming DC algorithm

Links to other methods

Convex-Concave procedure (CCCP) [Yuille and Rangarajan, 2001]:
equivalent to DC procedure for differentiable functions J1 and J2

DC Algorithm is a Majorization-Minimization procedure [Hunter and
Lange, 2004]

Multistage convex relaxation approach based on concave duality
[Zhang, 2008]

Common feature
Bound the objective function by a convex relaxation

Reduce the bound by minimizing the relaxation function to yield a new
solution
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Elements of DC programming DC and non-convex sparsity recovery

DC algorithm in play

Application to sparse signal modelling
Signal model: y = Φw + ε

y ∈ RN : noisy measurements
Φ ∈ RN×d : given dictionary
each εi is a realisation of Gaussian noise
w ∈ Rd : sparse parameter vector

Optimization problem

min
w∈Rd

1
2
‖y −Φw‖22 + λ

d∑
j=1

Ω(|wj |)
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Elements of DC programming DC and non-convex sparsity recovery

DC algorithm in play

Optimization problem

min
w∈Rd

1
2
‖y −Φw‖22 + λ

d∑
j=1

Ω(|wj |)

Non-convex penalties
1 Bridge: Ω(wj) = |wj |p, p ∈ (0, 1)

2 Log: Ω(wj) = log(|wj |p + ε),
3 Capped `1: Ω(wj) = min (η, |wj |)
4 SCAD
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Elements of DC programming DC and non-convex sparsity recovery

DC decomposition

DC Decomposition of the penalty

Ω(|wj |) = Ω1(|wj |)− Ω2(|wj |)

Ω1(|wj |) = |wj | and Ω2(|wj |) = |wj | − Ω(|wj |)

Example
For capped `1 penalty we have

Ω(|wj |) = min (η, |wj |)
Ω2(|wj |) = max(0, |wj | − η)
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Elements of DC programming DC and non-convex sparsity recovery

DC decomposition

DC Decomposition of the penalty

Ω(|wj |) = Ω1(|wj |)− Ω2(|wj |)

Ω1(|wj |) = |wj | and Ω2(|wj |) = |wj | − Ω(|wj |)

DC decomposition of the objective function
Using additivity property of DC
J1(w) = 1

2‖y −Φw‖22 + λ
∑d

j=1 |wj | and J2(w) = λ
∑d

j=1 Ω2(|wj |)

Convex majorization at w = wt

Majorization of −J2(w)

−λ
∑d

j=1 Ω2(|wj |) ≤ −λ
∑d

j=1 α
t
j |wj |+ cte with αt

j ∈ ∂Ω2(|wj |)

Majorization of the objective function: J1(w)− λ
∑d

j=1 α
t
j |wj |+ cte
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Elements of DC programming DC and non-convex sparsity recovery

Iterative re-weighted lasso

Iterative re-weigthed Lasso algorithm

Set t = 0, initialize wt
repeat

Select αt
j ∈ ∂Ω2(|wj |) for w = wt

Find wt+1 = argminw
1
2‖y −Φw‖22 +

∑d
j=1(λ− αt

j )|wj |

t = t + 1
until convergence

Each iteration is a Lasso type problem
Require any off-the-shelf Lasso solver
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Elements of DC programming DC and non-convex sparsity recovery

Empirical evaluation: convergence

Typically few iterations for convergence in objective function
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Elements of DC programming DC and non-convex sparsity recovery

Performance measure

Fmeasure = 2
|supp(w∗) ∩ supp(ŵ)|
|supp(w∗)|+ |supp(ŵ)|

supp(w) = {j ,wj 6= 0}
w∗: true vector and ŵ: estimated one

Fmeasure close to 1 indicates a performing support recovery

Comparison of Lasso with non-convex penalties
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Elements of DC programming DC and non-convex sparsity recovery

Performance
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Non-convex penalties are effective than Lasso, especially log penalty
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Elements of DC programming DC and non-convex sparsity recovery

Computation time
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Elements of DC programming DC and non-convex sparsity recovery

Is there a theoretical guarantee on estimated w?

RIP Condition

Let Φ =

φ(x1)>

...
φ(xN)>

 ∈ RN×d the dictionary. Φ satisfies the RIP condition

at sparsity level ‖w‖0 ≤ s if there exists finite c , c > 0 such that

c‖w‖22 ≤ ‖Φw‖22 ≤ c‖w‖22

Theorem [Zhang et al., 2012]

Under RIP condition, previous DC approach for sparse regression gives a
solution ŵ with supp(ŵ) = supp(w∗), ‖ŵ −w∗‖22 ≤ O(σ2‖w‖0/N) if for
some constant c > 0, minj∈supp(w∗) |w∗j | ≥ cσ

√
ln d/N
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Elements of DC programming DC and non-convex sparsity recovery

So far

Non-convex penalties are effective for support recovery compared to
convex penality

DC approach promotes multi-stage convex (non-smooth) relaxation to
address non-convex (non-smooth) problem

The convex relaxation may be non-unique

Prefer decomposition that will lead to ”easy” to solve convex problem

However each iteration requires to solve an entire convex (and possibly
computational costly) problem

How to leverage on fast methods?
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DC Proximal Newton

DC proximal Newton
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DC Proximal Newton

Proximal approach

General problem

min
w

J(w) := L(w) + Ω(w)

Assumptions

L(w) is either convex or is a DC function L(w) = L1(w)− L2(w),
lower bounded and twice differentiable

We require L1(w) to be gradient Lipschitz

Ω(w) = Ω1(w)− Ω2(w) is a DC function with Ωk(w) lower
semi-continuous, proper convex function

Ω(w) may not be smooth
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DC Proximal Newton

Proximal approach

General problem

min
w

J(w) := L(w) + Ω(w)

Solving algorithms

Apply DC procedure to L1(w) + Ω1(w)− (L2(w) + Ω2(w))

Might be slow if the convex relaxation problem is not easy to handle

Apply proximal method

Generate sequence {wt+1 = argminw J̃(w,wt)}

J̃(w,wt) = L̃(w,wt) + Ω̃(w,wt): convex quadratic majorization of
J(w) at wt

Exploit Lipschitz gradient property and DC convex linearisation

G. GASSO (LITIS, EA 4108) Non-convex and DCA October 16, 2014 30 / 38



DC Proximal Newton Convex majorization

Quadratic convex majorization

minw L(w) + Ω(w)

Quadratic approximation of L

L(w) = L1(w)− L2(w) twice differentiable and L1 gradient Lipschitz
Let w = wt + ∆w

L̃(w,wt) = L1(wt) +∇L1(wt)>∆w +
1
2

∆w>Ht∆w

−L2(wt)−∇L2(wt)>∆w

Ht � 0: approximation of the Hessian of L1

Linear approximation of Ω(w) = Ω1(w)− Ω2(w)

Ω̃(w,wt) = Ω1(w)−Ω2(wt)−α>t ∆w, αt ∈ ∂Ω2(wt)

G. GASSO (LITIS, EA 4108) Non-convex and DCA October 16, 2014 31 / 38



DC Proximal Newton Convex majorization

Quadratic convex majorization
Quadratic approximation of L

Let w = wt + ∆w

L̃(w,wt) = L1(wt) +∇L1(wt)>∆w +
1
2

∆w>Ht∆w

−L2(wt)−∇L2(wt)>∆w

Ht � 0: approximation of the Hessian of L1

Linear approximation of Ω(w) = Ω1(w)− Ω2(w)

Ω̃(w,wt) = Ω1(w)−Ω2(wt)−α>t ∆w, αt ∈ ∂Ω2(wt)

Quadratic approximation of the objective function

J̃(∆w) =
1
2

∆w>Ht∆w + v>t ∆w + Ω1(wt + ∆w) + cte

with vt = ∇L1(wt)−∇Ω1(wt)−αt
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DC Proximal Newton DC proximal Newton Algorithm

Optimization scheme

General scheme
At each iteration wt+1 = wt + γt∆wt (γt is the step-size)

Search direction: ∆w = argmin∆wJ̃(∆w)

min∆w
1
2

∆w>Ht∆w + v>t ∆w + Ω1(wt + ∆w)

⇔ minz
1
2

(z−wt)>Ht(z−wt) + v>t (z−wt) + Ω1(z), z = wt + ∆w

⇔ minz
1
2
‖(z−wt) + H−1

t vt‖2Ht
+ Ω1(z) with ‖z‖2H = z>Hz

Definition: Proximal Newton

proxH
Ω1

(w) = argminz
1
2
‖z−w‖2H+Ω1(z)

Search direction

∆w = proxHt
Ω1

(wt −H−1
t vt)−wt
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DC Proximal Newton DC proximal Newton Algorithm

Algorithm

Non-convex second-order (Newton) Proximal algorithm

Set t = 0, initialize wt
repeat

Compute vt = ∇L1(wt)−∇L2(wt)−αt with αt ∈ ∂Ω2(wt)

Compute the Hessian Ht

Solve for ∆wt = proxHt
Ω1

(wt −H−1
t vt)−wt

Compute the step-size γt by backtracking

wt+1 = wt + γt∆wt

Increase t

until convergence
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DC Proximal Newton DC proximal Newton Algorithm

Elements of convergence

Convergence guarantees
Sufficient decrease of the objective function: for Ht � 0 it holds

J(wt+1)− J(wt) ≤ −γt∆w>t Ht∆wt + O(γ2
t )

Existence of a step-size: for Ht � mI and ζ the Lipschitz constant of
∇L1 the decrease holds for

γt ≤ min
(
1, 2m

1− θ
ζ

)
, θ ∈ (0, 1/2)

Convergence to a stationary point: if the previous conditions hold at
each iteration t, any limit point of the sequence {wt} is a stationary
point of the optimization problem
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DC Proximal Newton DC proximal Newton Algorithm

Related method

General Iterative Shrinkage and Thresholding Algorithm (GIST) [Gong et al.,
2013]

First order proximal method

Based on a non-convex majorization function

F̃ (w,wt) = L(wt) +∇L(wt)>∆w +
γt

2
∆w>∆w + Ω(w)

wt+1 = proxΩ (wt −∇L(wt)/γt) where

proxΩ (w) = argminz
1
2‖z−w‖22 + Ω(z) is a non-convex proximal

Closed-form proximal solution exists for previously presented
non-convex penalties

G. GASSO (LITIS, EA 4108) Non-convex and DCA October 16, 2014 35 / 38



DC Proximal Newton Evaluation

Applications

Classification problem

Dataset: {(xi , yi ) ∈ Rd × {−1, 1}}Ni=1

Loss function: L(w) =
∑N

i=1 log(1 + exp(−yix>i w)) (convex function)

Regularizer: Ω(w) =
∑d

j=1 min (η, |wj |) (non-convex penalty)

Class. Rate (%) Time (s)
dataset d DCA GIST DC-PN DCA GIST DC-PN
la2 31472 91.32±0.9 91.67±0.9 91.81±0.9 36±11 45±26 21±12
sports 14870 97.86±0.4 97.94±0.3 97.94±0.3 89±70 161±162 23±13
classic 41681 96.93±0.6 97.33±0.5 97.38±0.5 3.5±3.8 310±11 17±7
ohscal 11465 87.05±0.6 87.99±0.6 89.27±0.6 320±134 44±21 19±25
real-sim 20958 95.16±0.3 96.28±0.2 96.05±0.2 63±96 382±813 23±9

Proximal methods exploiting DC decomposition are faster than raw DC approach.
Proximal Newton is faster the gradient counterpart.
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DC Proximal Newton Evaluation

Applications

Semi-supervised classification problem

Labeled set: {(xi , yi ) ∈ Rd × {−1, 1}}Ni=1, Unabeled set: {z` ∈ Rd}M`=1

Loss function labeled set:
∑N

i=1 log(1 + exp(−yix>i w)) (convex)

Loss function unlabeled set:
∑M

j=1 T (z>j w) (non-convex)

Regularizer: Ω(w) =
∑d

j=1 min (η, |wj |) (non-convex penalty)

DC decomposition of T (·)
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DC Proximal Newton Evaluation

Applications

Semi-supervised classification problem

Labeled set: {(xi , yi ) ∈ Rd × {−1, 1}}Ni=1, Unabeled set: {z` ∈ Rd}M`=1

Loss function labeled set:
∑N

i=1 log(1 + exp(−yix>i w)) (convex)

Loss function unlabeled set:
∑M

j=1 T (z>j w) (non-convex)

Regularizer: Ω(w) =
∑d

j=1 min (η, |wj |) (non-convex penalty)

Classification Rate (%)
dataset d N M Sparse Log Sparse Transd.
la2 31472 61 2398 67.65±2.6 70.23±3.1

sports 14870 85 6778 81.26±5.0 88.15±4.4
classic 41681 70 5604 72.74±4.3 86.97±2.2
ohscal 11465 55 8873 70.35±2.4 73.39±3.6
real-sim 20958 723 57124 88.81±0.3 88.91±1.4

url 3.23×106 1000 40000 86.64±5.8 87.39±6.0

DC Proximal Newton can handle large scale and high-dimension data
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Conclusion

Conclusion

Non-convex penalties: alternative relaxation of counting norm

Appear effective in practice to aggressively enforce sparsity

Flourishing efficient optimization algorithms

Many extensions for classification, regression, matrix factorzation

Extension to case where one seeks sparsity in the loss function side
(example : SVM)

Extension to structured sparsity

Lack of theoretical analysis of local optimal solution
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