DC approach for a family of non-convex problems in machine learning

Gilles GASSO

Joint work with A. Rakotomamonjy, R. Flamary and S. Canu

LITIS EA 4108

GDR ISIS

October 16, 2014

G. GASSO (LITIS, EA 4108)

Non-convex and DCA

October 16, 2014 1 / 38

Outline

Introduction

- Sparsity
- \bullet ℓ_0 penalty and its relaxations

2 Elements of DC programming

- DC function and properties
- DC algorithm
- DC and non-convex sparsity recovery

OC Proximal Newton

- Convex majorization
- DC proximal Newton Algorithm
- Evaluation
- Conclusion

э

Introduction

General learning problem

- Dataset $\mathcal{S} = \{(\mathsf{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1}^N$
- Learn a functional relation $f: \mathcal{X} \to \mathcal{Y}$

 $\min_{f \in \mathcal{C}} L(f, \mathcal{S}) + \lambda \Omega(f)$

fitting error

regularization term

• $\mathcal{C} \subseteq \mathcal{H}$: space of functions

Common issues

- Choice of the loss function
- Specification of the regularization term
- Optimization algorithm

Loss function and regularization

Loss function

- Regression
- Classification
- Matrix factorization
- ...

Regularization

- Avoid model overfitting
- Control model complexity
- Encode a priori information
- Enforce properties as smoothness or sparsity

Sparsity

- Occam's Razor principle: do not multiply entities beyond need
- Tremendous stream of research
- Many practical applications

Signal denoising

< 67 ▶

-

Sparsity

Sparsity

- Occam's Razor principle: do not multiply entities beyond need
- Tremendous stream of research
- Many practical applications

Feature selection

Sparsity

Sparsity

Sparse Learning problem

- Desired model f depends on parameter vector $\mathbf{w} \in \mathbb{R}^d$
- Simple sparse learning problem

$$\min_{w} L(w) + \lambda \|w\|_0$$

Counting norm

1 Count:
$$\Omega(\mathbf{w}) = \sum_{j=1}^{d} \mathbb{I}_{\mathbf{w}_j \neq 0}$$

2 Number of non-zeros components of w

G. GASSO (LITIS, EA 4108)

Non-convex and DCA

October 16, 2014 6 / 38

э

Algorithms

Solving methods

- Matching Pursuit and variants [Mallat and Zhang, 1993, Davis et al., 1997]
- Forward-backward selection
- Iterative hard thresholding [Blumensath and Davies, 2008, Attouch et al., 2013]
- Gradient hard thresholding pursuit [Yuan et al., 2013]

Applications

- Compressive sensing, dictionary learning
 - For sparse regression, applications come with exact recovery properties
- Classification [Lozano et al., 2011]
- Matrix factorizations [Wang et al., 2014]

Relaxation of counting norm

Convex relaxation • ℓ_1 -norm $\Omega(\mathbf{w}) = \|\mathbf{w}\|_1$ • Leading to Lasso problem in sparse regression

• Leads to convex optimization for convex loss function L(w)

Sparsity recovery of a signal over atoms {φ(x_i) ∈ ℝ^d}^N_{i=1}
 J = {j, w_j ≠ 0}: support of the signal to be recovered. Lasso is sign consistent iff ||Φ_{JcJ}Φ⁻¹_{JJ}sign(w_J)||_∞ ≤ 1, Φ = IE{φ(x_i)φ(x_i)^T}

However

- $\bullet\,$ Lasso tends to select larger support J
- \bullet A remedy: use more appropriate approximation of $\|\cdot\|_0$

G. GASSO (LITIS, EA 4108)

Non-convex and DCA

Relaxation of counting norm: non-convex approximations

- **9** Bridge [Frank and Friedman, 1993] : $\Omega(\mathbf{w}) = \sum_{j=1}^d |w_j|^p$, $p \in (0,1)$
- 3 Log [Candes et al., 2008] : $\Omega(\mathbf{w}) = \sum_{j=1}^{d} \log(|w_j|^p + \epsilon)$,
- **3** Capped ℓ_1 [Zhang, 2008] : $\Omega(\mathbf{w}) = \sum_{j=1}^d \min\left(\eta, |w_j|\right)$
- SCAD [Fan and Li, 2001]

Relaxation of counting norm: non-convex approximations

Raised issues

- Choice of the penalty
- Optimization methods
- Statistical guarantees

Optimization approaches

- Coordinate wise optimization [Mazumder et al., 2011, Breheny and Huang, 2011]
- Active set methods [Jiao et al., 2013]
- Regularization path (SCAD and MCP) [Breheny and Huang, 2011]
- DC algorithm [Gasso et al., 2009]
- Proximal methods [Gong et al., 2013, Rakotomamonjy et al., 2014]

Difference of convex approach

G. GASSO (LITIS, EA 4108)

Non-convex and DCA

October 16, 2014

< 4 → <

11 / 38

3

Recall General problem

Learning problem

- Let the objective function $J(\mathbf{w}) = L(\mathbf{w}) + \lambda \Omega(\mathbf{w})$
- Optimization problem

 $\min_{\mathbf{w}\in\mathbb{R}^d}J(\mathbf{w})$

Difference of Convex (DC) Approach

- Dates to early 90's [Tao et al., 1988, Tao and Le Thi Hoai, 1994]
- Many further improvements (theory and algorithm) and applications
- Requires $J(\mathbf{w})$ to be a Difference of Convex functions

・ 伺 ト ・ ヨ ト ・ ヨ ト

Difference of Convex functions

DC function

- Let J₁(w), J₂(w) : C →] −∞, +∞] two convex, proper and lower semi-continuous functions
- $J(\mathbf{w})$ is a DC function if it can be expressed as $J(\mathbf{w}) = J_1(\mathbf{w}) J_2(\mathbf{w})$.

Properties of DC functions

Non-uniqueness of a DC decomposition

- Let $J(\mathbf{w}) = J_1(\mathbf{w}) J_2(\mathbf{w})$ a DC function
- Let $g(\mathbf{w})$ a convex, proper and lsc function
- J can be expressed as $J(\mathbf{w}) = (J_1(\mathbf{w}) + g(\mathbf{w})) (J_2(\mathbf{w}) + g(\mathbf{w}))$

Linear combination

- Let $J_k(\mathbf{w}) = J_{k,1}(\mathbf{w}) J_{k,2}(\mathbf{w})$, $k = 1, \cdots, M$ being DC functions
- Any function $\sum_{k=1}^{M} \beta_k J_k(\mathbf{w})$ with $\beta_k \in \mathbb{R}$ is a DC function

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Properties of DC functions

Convex majorization

- Let $\partial J_2(\mathbf{w}_t) = \{ \boldsymbol{\alpha}_t \in \mathbb{R}^d, J_2(\mathbf{w}) \ge J_2(\mathbf{w}_t) + \langle \mathbf{w} \mathbf{w}_t, \boldsymbol{\alpha}_t \rangle, \forall \mathbf{w} \in \mathbb{R}^d \}$ the subdifferential of J_2 at \mathbf{w}_t .
- A convex majorization function of $J(\mathbf{w}) = J_1(\mathbf{w}) J_2(\mathbf{w})$ at \mathbf{w}_t is

$$J(\mathbf{w}) \leq J_1(\mathbf{w}) - J_2(\mathbf{w}_t) - \langle \mathbf{w} - \mathbf{w}_t, \boldsymbol{\alpha}_t \rangle$$

DC Algorithm

Principle: successive convex relaxations

• At each iteration t, define the convex majorization function

$$J_{cvx}(\mathbf{w}) = J_1(\mathbf{w}) - J_2(\mathbf{w}_t) - \langle \mathbf{w} - \mathbf{w}_t, oldsymbol{lpha}_t
angle \quad ext{with} \quad oldsymbol{lpha}_t \in \partial J_2(\mathbf{w}_t)$$

• Next solution: $\mathbf{w}_{t+1} = \operatorname{argmin}_{\mathbf{w}} J_{cvx}(\mathbf{w})$

Algorithm for solving $\min_{\mathbf{w}} J_1(\mathbf{w}) - J_2(\mathbf{w})$

```
Set t = 0, initialize \mathbf{w}_t \in \text{dom} J_1

repeat

Select \alpha_t \in \partial J_2(\mathbf{w}_t)

Define J_{cvx}(\mathbf{w}) and solve \mathbf{w}_{t+1} = \operatorname{argmin}_{\mathbf{w}} J_{cvx}(\mathbf{w})

t = t + 1
```

until convergence

Convergence

Main Results

Assume $J(\mathbf{w}) = J_1(\mathbf{w}) - J_2(\mathbf{w})$ a coercive function with J_1, J_2 , lsc proper convex functions such as dom $J_1 \subseteq \text{dom} J_2$. It holds

- the sequence $\{w_t\}$ is well defined or equivalently dom $\partial J_1 \subseteq \operatorname{dom} \partial J_2$
- the sequence $\{J(\mathbf{w}_t)\}$ is monotonically decreasing
- if the minimum of J is finite, every limit point ŵ of the bounded sequence {w_t} (J being coercive) is a critical point of J and satisfies the local optimality condition

э

- 4 同 6 4 日 6 4 日 6

Convergence

Decrease of the objective function

• Establish that
$$J_1(\mathsf{w}_{t+1}) - J_2(\mathsf{w}_{t+1}) \leq J_1(\mathsf{w}_t) - J_2(\mathsf{w}_t)$$
 for all t

•
$$\alpha_t \in \partial J_2(\mathbf{w}_t) = \{\alpha, J_2(\mathbf{w}) \ge J_2(\mathbf{w}_t) + \langle \mathbf{w} - \mathbf{w}_t, \alpha_t \rangle\}$$
 implies:
 $-J_2(\mathbf{w}) \le -J_2(\mathbf{w}_t) + \langle \mathbf{w}_t - \mathbf{w}, \alpha_t \rangle \ \forall \mathbf{w}, \text{ hence}$
 $-J_2(\mathbf{w}_{t+1}) \le -J_2(\mathbf{w}_t) + \langle \mathbf{w}_t - \mathbf{w}_{t+1}, \alpha_t \rangle$

$$J_1(\mathbf{w}_{t+1}) - J_2(\mathbf{w}_{t+1}) \le J_1(\mathbf{w}_{t+1}) - J_2(\mathbf{w}_t) + \langle \mathbf{w}_t - \mathbf{w}_{t+1}, \alpha_t \rangle \quad (\mathsf{i})$$

•
$$\mathbf{w}_{t+1} = \operatorname{argmin}_{\mathbf{w}} J_1(\mathbf{w}) - J_2(\mathbf{w}_t) - \langle \mathbf{w} - \mathbf{w}_t, \alpha_t \rangle$$
 leads to
 $J_1(\mathbf{w}_{t+1}) - J_2(\mathbf{w}_t) + \langle \mathbf{w}_t - \mathbf{w}_{t+1}, \alpha_t \rangle \leq J_1(\mathbf{w}_t) - J_2(\mathbf{w}_t)$ (ii)

• (i) and (ii) imply the desired result
$$J(\mathbf{w}_{t+1}) \leq J(\mathbf{w}_t)$$

< 17 ▶

э

Links to other methods

- Convex-Concave procedure (CCCP) [Yuille and Rangarajan, 2001]: equivalent to DC procedure for differentiable functions J_1 and J_2
- DC Algorithm is a Majorization-Minimization procedure [Hunter and Lange, 2004]
- Multistage convex relaxation approach based on concave duality [Zhang, 2008]

Common feature

- Bound the objective function by a convex relaxation
- Reduce the bound by minimizing the relaxation function to yield a new solution

∃ ► < ∃ ►</p>

DC algorithm in play

Application to sparse signal modelling

- Signal model: $\mathbf{y} = \mathbf{\Phi}\mathbf{w} + \boldsymbol{\epsilon}$
- $\mathbf{y} \in \mathbb{R}^N$: noisy measurements
- $\mathbf{\Phi} \in \mathbb{R}^{N \times d}$: given dictionary
- each ϵ_i is a realisation of Gaussian noise
- $\mathbf{w} \in \mathbb{R}^d$: sparse parameter vector

Optimization problem

$$\min_{\mathbf{w}\in\mathbb{R}^d}\frac{1}{2}\|\mathbf{y}-\mathbf{\Phi}\mathbf{w}\|_2^2+\lambda\sum_{j=1}^d\Omega(|w_j|)$$

DC algorithm in play

Optimization problem

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{2}\|\mathbf{y}-\mathbf{\Phi}\mathbf{w}\|_{2}^{2}+\lambda\sum_{j=1}^{d}\Omega(|w_{j}|)$$

DC decomposition

DC Decomposition of the penalty

•
$$\Omega(|w_j|) = \Omega_1(|w_j|) - \Omega_2(|w_j|)$$

• $\Omega_1(|w_j|) = |w_j|$ and $\Omega_2(|w_j|) = |w_j| - \Omega(|w_j|)$

DC decomposition

DC Decomposition of the penalty

- $\Omega(|w_j|) = \Omega_1(|w_j|) \Omega_2(|w_j|)$
- $\Omega_1(|w_j|) = |w_j|$ and $\Omega_2(|w_j|) = |w_j| \Omega(|w_j|)$

DC decomposition of the objective function

- Using additivity property of DC
- $J_1(\mathbf{w}) = \frac{1}{2} \|\mathbf{y} \mathbf{\Phi}\mathbf{w}\|_2^2 + \lambda \sum_{j=1}^d |w_j| \text{ and } J_2(\mathbf{w}) = \lambda \sum_{j=1}^d \Omega_2(|w_j|)$

Convex majorization at $\mathbf{w} = \mathbf{w}_t$

• Majorization of $-J_2(\mathbf{w})$

 $-\lambda \sum_{j=1}^{d} \Omega_2(|w_j|) \leq -\lambda \sum_{j=1}^{d} lpha_j^t |w_j| + \mathsf{cte} \ \mathsf{with} \ lpha_j^t \in \partial \Omega_2(|w_j|)$

• Majorization of the objective function: $J_1(\mathbf{w}) - \lambda \sum_{i=1}^d \alpha_i^t |w_i| + \text{cte}$

Iterative re-weighted lasso

Iterative re-weigthed Lasso algorithm

```
Set t = 0, initialize \mathbf{w}_t

repeat

Select \alpha_j^t \in \partial \Omega_2(|w_j|) for \mathbf{w} = \mathbf{w}_t

Find \mathbf{w}_{t+1} = \operatorname{argmin}_{\mathbf{w}} \frac{1}{2} ||\mathbf{y} - \mathbf{\Phi}\mathbf{w}||_2^2 + \sum_{j=1}^d (\lambda - \alpha_j^t) |w_j|

t = t + 1

until convergence
```

- Each iteration is a Lasso type problem
- Require any off-the-shelf Lasso solver

Empirical evaluation: convergence

• Typically few iterations for convergence in objective function

Performance measure

$$\mathsf{Fmeasure} = 2 \frac{|\mathsf{supp}(\mathbf{w}^*) \cap \mathsf{supp}(\hat{\mathbf{w}})|}{|\mathsf{supp}(\mathbf{w}^*)| + |\mathsf{supp}(\hat{\mathbf{w}})|}$$

- supp(w) = $\{j, w_j \neq 0\}$
- w^* : true vector and \hat{w} : estimated one
- Fmeasure close to 1 indicates a performing support recovery
- Comparison of Lasso with non-convex penalties

э

Performance

Dotted lines: highly correlated atoms, Solid lines: weak dependence of atoms

Non-convex penalties are effective than Lasso, especially log penalty

G. GASSO (LITIS, EA 4108)

Non-convex and DCA

October 16, 2014

25 / 38

Computation time

G. GASSO (LITIS, EA 4108)

э

Is there a theoretical guarantee on estimated \mathbf{w} ?

RIP Condition

Let
$$\Phi = \begin{pmatrix} \phi(\mathbf{x}_1)^\top \\ \vdots \\ \phi(\mathbf{x}_N)^\top \end{pmatrix} \in \mathbb{R}^{N \times d}$$
 the dictionary. Φ satisfies the RIP condition
at sparsity level $\|\mathbf{w}\|_0 \le s$ if there exists finite $\underline{c}, \overline{c} > 0$ such that
 $\underline{c} \|\mathbf{w}\|_2^2 \le \|\Phi\mathbf{w}\|_2^2 \le \overline{c} \|\mathbf{w}\|_2^2$

Theorem [Zhang et al., 2012]

Under RIP condition, previous DC approach for sparse regression gives a solution $\hat{\mathbf{w}}$ with supp $(\hat{\mathbf{w}}) = \operatorname{supp}(\mathbf{w}^*)$, $\|\hat{\mathbf{w}} - \mathbf{w}^*\|_2^2 \leq O(\sigma^2 \|\mathbf{w}\|_0 / N)$ if for some constant c > 0, $\min_{j \in \operatorname{supp}(\mathbf{w}^*)} |w_j^*| \geq c\sigma \sqrt{\ln d/N}$

So far

- Non-convex penalties are effective for support recovery compared to convex penality
- DC approach promotes multi-stage convex (non-smooth) relaxation to address non-convex (non-smooth) problem
- The convex relaxation may be non-unique
- Prefer decomposition that will lead to "easy" to solve convex problem
- However each iteration requires to solve an entire convex (and possibly computational costly) problem
- How to leverage on fast methods?

э

∃ → (∃ →

DC Proximal Newton

DC proximal Newton

G. GASSO (LITIS, EA 4108)

Non-convex and DCA

October 16, 2014

・ 伺 ト ・ ヨ ト ・ ヨ ト

29 / 38

æ

Proximal approach

General problem

$$\min_{\mathbf{w}} J(\mathbf{w}) := L(\mathbf{w}) + \Omega(\mathbf{w})$$

Assumptions

- L(w) is either convex or is a DC function L(w) = L₁(w) L₂(w), lower bounded and twice differentiable
- We require $L_1(\mathbf{w})$ to be gradient Lipschitz
- $\Omega(\mathbf{w}) = \Omega_1(\mathbf{w}) \Omega_2(\mathbf{w})$ is a DC function with $\Omega_k(\mathbf{w})$ lower semi-continuous, proper convex function
- $\Omega(\mathbf{w})$ may not be smooth

Proximal approach

General problem

$$\min_{\mathbf{w}} J(\mathbf{w}) := L(\mathbf{w}) + \Omega(\mathbf{w})$$

Solving algorithms

• Apply DC procedure to $L_1(\mathbf{w}) + \Omega_1(\mathbf{w}) - (L_2(\mathbf{w}) + \Omega_2(\mathbf{w}))$

Might be slow if the convex relaxation problem is not easy to handle

- Apply proximal method
 - Generate sequence $\{\mathbf{w}_{t+1} = \operatorname{argmin}_w \tilde{J}(\mathbf{w}, \mathbf{w}_t)\}$
 - $\tilde{J}(\mathbf{w}, \mathbf{w}_t) = \tilde{L}(\mathbf{w}, \mathbf{w}_t) + \tilde{\Omega}(\mathbf{w}, \mathbf{w}_t)$: convex quadratic majorization of $J(\mathbf{w})$ at \mathbf{w}_t
 - Exploit Lipschitz gradient property and DC convex linearisation

3

(日) (同) (三) (三)

Quadratic convex majorization

 $\min_{\mathbf{w}} L(\mathbf{w}) + \Omega(\mathbf{w})$

Quadratic approximation of L

- $L(\mathbf{w}) = L_1(\mathbf{w}) L_2(\mathbf{w})$ twice differentiable and L_1 gradient Lipschitz
- Let $\mathbf{w} = \mathbf{w}_t + \Delta \mathbf{w}$

$$\tilde{L}(\mathbf{w}, \mathbf{w}_t) = L_1(\mathbf{w}_t) + \nabla L_1(\mathbf{w}_t)^{\top} \Delta \mathbf{w} + \frac{1}{2} \Delta \mathbf{w}^{\top} \mathbf{H}_t \Delta \mathbf{w} \\ -L_2(\mathbf{w}_t) - \nabla L_2(\mathbf{w}_t)^{\top} \Delta \mathbf{w}$$

• $H_t \succeq 0$: approximation of the Hessian of L_1

Linear approximation of $\Omega(\mathbf{w}) = \Omega_1(\mathbf{w}) - \Omega_2(\mathbf{w})$

$$ilde{\Omega}(\mathsf{w},\mathsf{w}_t) \;\;=\;\; \Omega_1(\mathsf{w}) - \Omega_2(\mathsf{w}_t) - oldsymbol{lpha}_t^ op \Delta \mathsf{w}, \quad oldsymbol{lpha}_t \in \partial \Omega_2(\mathsf{w}_t)$$

Quadratic convex majorization

Quadratic approximation of L

• Let
$$\mathbf{w} = \mathbf{w}_t + \Delta \mathbf{w}$$

 $\tilde{L}(\mathbf{w}, \mathbf{w}_t) = L_1(\mathbf{w}_t) + \nabla L_1(\mathbf{w}_t)^\top \Delta \mathbf{w} + \frac{1}{2} \Delta \mathbf{w}^\top \mathbf{H}_t \Delta \mathbf{w}$
 $-L_2(\mathbf{w}_t) - \nabla L_2(\mathbf{w}_t)^\top \Delta \mathbf{w}$

• $H_t \succ 0$: approximation of the Hessian of L_1

Linear approximation of $\Omega(\mathbf{w}) = \Omega_1(\mathbf{w}) - \Omega_2(\mathbf{w})$

$$\tilde{\Omega}(\mathbf{w},\mathbf{w}_t) = \Omega_1(\mathbf{w}) - \Omega_2(\mathbf{w}_t) - \boldsymbol{\alpha}_t^\top \Delta \mathbf{w}, \quad \boldsymbol{\alpha}_t \in \partial \Omega_2(\mathbf{w}_t)$$

Quadratic approximation of the objective function

$$\tilde{J}(\Delta \mathbf{w}) = \frac{1}{2} \Delta \mathbf{w}^{\top} \mathbf{H}_{t} \Delta \mathbf{w} + \mathbf{v}_{t}^{\top} \Delta \mathbf{w} + \Omega_{1}(\mathbf{w}_{t} + \Delta \mathbf{w}) + \text{cte}$$
with $\mathbf{v}_{t} = \nabla L_{1}(\mathbf{w}_{t}) - \nabla \Omega_{1}(\mathbf{w}_{t}) - \boldsymbol{\alpha}_{t}$

G. GASSO (LITIS, EA 4108)

Non-convex and DCA

Optimization scheme

General scheme

- At each iteration $\mathbf{w}_{t+1} = \mathbf{w}_t + \gamma_t \Delta \mathbf{w}_t$ (γ_t is the step-size)
- Search direction: $\Delta \mathbf{w} = \operatorname{argmin}_{\Delta \mathbf{w}} \tilde{J}(\Delta \mathbf{w})$

$$\begin{split} \min_{\Delta \mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^{\top} \mathbf{H}_{t} \Delta \mathbf{w} + \mathbf{v}_{t}^{\top} \Delta \mathbf{w} + \Omega_{1} (\mathbf{w}_{t} + \Delta \mathbf{w}) \\ \Leftrightarrow & \min_{\mathbf{z}} & \frac{1}{2} (\mathbf{z} - \mathbf{w}_{t})^{\top} \mathbf{H}_{t} (\mathbf{z} - \mathbf{w}_{t}) + \mathbf{v}_{t}^{\top} (\mathbf{z} - \mathbf{w}_{t}) + \Omega_{1} (\mathbf{z}), \ \mathbf{z} = \mathbf{w}_{t} + \Delta \mathbf{w} \\ \Leftrightarrow & \min_{\mathbf{z}} & \frac{1}{2} \| (\mathbf{z} - \mathbf{w}_{t}) + \mathbf{H}_{t}^{-1} \mathbf{v}_{t} \|_{\mathcal{H}_{t}}^{2} + \Omega_{1} (\mathbf{z}) \quad \text{with} \quad \| \mathbf{z} \|_{\mathbf{H}}^{2} = \mathbf{z}^{\top} \mathbf{H} \mathbf{z} \end{split}$$

Definition: Proximal Newton

 $\mathsf{prox}_{\Omega_1}^{\mathsf{H}}(\mathsf{w}) = \mathsf{argmin}_{\mathsf{z}} \frac{1}{2} \|z \!-\! \mathsf{w}\|_{\mathsf{H}}^2 \!+\! \Omega_1(\mathsf{z})$

Search direction

$$\Delta \mathsf{w} = \mathsf{prox}_{\Omega_1}^{\mathsf{H}_t}(\mathsf{w}_t - \mathsf{H}_t^{-1}\mathsf{v}_t) - \mathsf{w}_t$$

(日) (同) (目) (日)

э

Algorithm

Non-convex second-order (Newton) Proximal algorithm

Set
$$t = 0$$
, initialize \mathbf{w}_t

repeat

Compute
$$\mathbf{v}_t = \nabla L_1(\mathbf{w}_t) - \nabla L_2(\mathbf{w}_t) - \alpha_t$$
 with $\alpha_t \in \partial \Omega_2(\mathbf{w}_t)$
Compute the Hessian \mathbf{H}_t

Solve for
$$\Delta w_t = \mathbf{prox}_{\Omega_1}^{\mathbf{H}_t}(w_t - \mathbf{H}_t^{-1}\mathbf{v}_t) - w_t$$

Compute the step-size γ_t by backtracking

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \gamma_t \Delta \mathbf{w}_t$$

Increase t

until convergence

G. GASSO (LITIS, EA 4108)

< 行い

Elements of convergence

Convergence guarantees

• Sufficient decrease of the objective function: for $H_t \succ 0$ it holds

$$J(\mathbf{w}_{t+1}) - J(\mathbf{w}_t) \leq -\gamma_t \Delta \mathbf{w}_t^\top \mathbf{H}_t \Delta \mathbf{w}_t + O(\gamma_t^2)$$

• Existence of a step-size: for $H_t \succ mI$ and ζ the Lipschitz constant of ∇L_1 the decrease holds for

$$\gamma_t \leq \min\left(1, 2m rac{1- heta}{\zeta}
ight), \quad heta \in (0, 1/2)$$

 Convergence to a stationary point: if the previous conditions hold at each iteration t, any limit point of the sequence {w_t} is a stationary point of the optimization problem

Related method

General Iterative Shrinkage and Thresholding Algorithm (GIST) [Gong et al., 2013]

- First order proximal method
- Based on a non-convex majorization function

$$\tilde{F}(\mathbf{w},\mathbf{w}_t) = L(\mathbf{w}_t) + \nabla L(\mathbf{w}_t)^\top \Delta \mathbf{w} + \frac{\gamma_t}{2} \Delta \mathbf{w}^\top \Delta \mathbf{w} + \Omega(\mathbf{w})$$

•
$$\mathbf{w}_{t+1} = \mathbf{prox}_{\Omega} \left(\mathbf{w}_t -
abla \mathcal{L}(\mathbf{w}_t) / \gamma_t
ight)$$
 where

- $\text{prox}_{\Omega}\left(w\right) = \text{argmin}_{z} \ \frac{1}{2} \|z w\|_{2}^{2} + \Omega(z)$ is a non-convex proximal
- Closed-form proximal solution exists for previously presented non-convex penalties

Applications

Classification problem

- Dataset: $\{(\mathsf{x}_i, y_i) \in \mathbb{R}^d \times \{-1, 1\}\}_{i=1}^N$
- Loss function: $L(\mathbf{w}) = \sum_{i=1}^{N} \log(1 + \exp(-y_i \mathbf{x}_i^{\top} \mathbf{w}))$ (convex function)
- Regularizer: $\Omega(\mathbf{w}) = \sum_{j=1}^{d} \min(\eta, |w_j|)$ (non-convex penalty)

			Class. F	Time (s)			
dataset	d	DCA	GIST	DC-PN	DCA	GIST	DC-PN
la2	31472	91.32±0.9	$91.67{\pm}0.9$	$91.81{\pm}0.9$	36±11	45±26	21±12
sports	14870	97.86±0.4	$97.94{\pm}0.3$	$97.94{\pm}0.3$	89±70	$161 {\pm} 162$	23±13
classic	41681	96.93±0.6	97.33±0.5	$97.38 {\pm} 0.5$	3.5±3.8	$310{\pm}11$	17 ± 7
ohscal	11465	87.05±0.6	$87.99 {\pm} 0.6$	89.27±0.6	320±134	44±21	19±25
real-sim	20958	$95.16{\pm}0.3$	96.28±0.2	$96.05{\pm}0.2$	63±96	$382{\pm}813$	23±9

Proximal methods exploiting DC decomposition are faster than raw DC approach. Proximal Newton is faster the gradient counterpart.

G. GASSO (LITIS, EA 4108)

Non-convex and DCA

October 16, 2014

(日) (同) (三) (三)

36 / 38

э

Applications

Semi-supervised classification problem

- Labeled set: $\{(x_i, y_i) \in \mathbb{R}^d \times \{-1, 1\}\}_{i=1}^N$, Unabeled set: $\{z_\ell \in \mathbb{R}^d\}_{\ell=1}^M$
- Loss function labeled set: $\sum_{i=1}^{N} \log(1 + \exp(-y_i \mathbf{x}_i^{\top} \mathbf{w}))$ (convex)
- Loss function unlabeled set: $\sum_{j=1}^{M} T(\mathbf{z}_{j}^{\top} \mathbf{w})$ (non-convex)
- Regularizer: $\Omega(\mathbf{w}) = \sum_{j=1}^{d} \min(\eta, |w_j|)$ (non-convex penalty)

Applications

Semi-supervised classification problem

- Labeled set: $\{(x_i, y_i) \in \mathbb{R}^d \times \{-1, 1\}\}_{i=1}^N$, Unabeled set: $\{z_\ell \in \mathbb{R}^d\}_{\ell=1}^M$
- Loss function labeled set: $\sum_{i=1}^{N} \log(1 + \exp(-y_i \mathbf{x}_i^{\top} \mathbf{w}))$ (convex)
- Loss function unlabeled set: $\sum_{j=1}^{M} T(\mathbf{z}_{j}^{\top} \mathbf{w})$ (non-convex)
- Regularizer: $\Omega(\mathbf{w}) = \sum_{j=1}^{d} \min(\eta, |w_j|)$ (non-convex penalty)

		Classification Rate (%)						
dataset	d	Ν	М	Sparse Log	Sparse Transd.			
la2	31472	61	2398	67.65±2.6	70.23±3.1			
sports	14870	85	6778	$81.26{\pm}5.0$	88.15±4.4			
classic	41681	70	5604	$72.74{\pm}4.3$	86.97±2.2			
ohscal	11465	55	8873	70.35±2.4	73.39±3.6			
real-sim	20958	723	57124	$88.81 {\pm} 0.3$	88.91±1.4			
url	3.23×10 ⁶	1000	40000	$86.64{\pm}5.8$	87.39±6.0			

DC Proximal Newton can handle large scale and high-dimension data

G. GASSO (LITIS, EA 4108)

Non-convex and DCA

October 16, 2014 37 / 38

Conclusion

- Non-convex penalties: alternative relaxation of counting norm
- Appear effective in practice to aggressively enforce sparsity
- Flourishing efficient optimization algorithms
- Many extensions for classification, regression, matrix factorzation
- Extension to case where one seeks sparsity in the loss function side (example : SVM)
- Extension to structured sparsity
- Lack of theoretical analysis of local optimal solution

References

- Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods. *Mathematical Programming*, 137 (1-2):91–129, 2013.
- Thomas Blumensath and Mike E. Davies. Iterative thresholding for sparse approximations. *Journal of Fourier Analysis and Applications*, 14(5-6):629–654, 2008.
- Patrick Breheny and Jian Huang. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. *The annals of applied statistics*, 5(1):232, 2011.
- E. J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing Sparsity by Reweighted l₁ Minimization. J Fourier Anal App, 14:877–90, 2008.
- G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approximations. *Constructive Approximation*, 13(1):57–98, 1997.
- Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle properties. *Journal of the American Statistical Association*, 96(456): 1348–1360, 2001.
- Ildiko E. Frank and Jerome H. Friedman. A Statistical View of Some Chemometrics Regression Tools. *Technometrics*, 35(2):109–135, 1993.
- Gilles Gasso, Alain Rakotomamonjy, and Stéphane Canu. Recovering sparse signals with a certain family of nonconvex penalties and dc programming. Signal Processing, IEEE Transactions on, 57(12):4686–4698, 2009.

G. GASSO (LITIS, EA 4108)

Non-convex and DCA

References

- Pinghua Gong, Changshui Zhang, Zhaosong Lu, Jianhua Huang, and Jieping Ye. A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. In *Proc. of ICML*, pages 37–45, 2013.
- David R Hunter and Kenneth Lange. A tutorial on mm algorithms. *The American Statistician*, 58(1):30–37, 2004.
- Yuling Jiao, Bangti Jin, and Xiliang Lu. A primal dual active set algorithm for a class of nonconvex sparsity optimization. Technical report, 2013.
- Aurelie C. Lozano, Grzegorz Swirszcz, and Naoki Abe. Group orthogonal matching pursuit for logistic regression. In *Proc. of AISTATS*, pages 452–460, 2011.
- S.G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. *IEEE Transactions on Signal Processing*, 41(12):3397–3415, 1993.
- Rahul Mazumder, Jerome H Friedman, and Trevor Hastie. Sparsenet: Coordinate descent with nonconvex penalties. *Journal of the American Statistical Association*, 106(495), 2011.
- Alain Rakotomamonjy, Remi Flamary, and Gilles Gasso. Dc proximal newton for non-convex optimization problems. 2014.
- Pham Dinh Tao and An Le Thi Hoai. Stabilité de la dualité lagrangienne en optimisation dc (différence de deux fonctions convexes). *Comptes rendus de l'Académie des sciences. Série 1, Mathématique*, 318(4):379–384, 1994.

Pham Dinh Tao et al. Duality in dc (difference of convex functions) optimization. subgradient methods. In *Trends in Mathematical Optimization*, pages 277–293. Springer, 1988.

Conclusion

- Zheng Wang, Ming jun Lai, Zhaosong Lu, Wei Fan, Hasan Davulcu, and Jieping Ye. Rank-one matrix pursuit for matrix completion. In *Proc. of ICML*, pages 91–99, 2014.
- Xiao-Tong Yuan, Ping Li, and Tong Zhang. Gradient hard thresholding pursuit for sparsity-constrained optimization. In *Proc. of ICML*, 2013.
- A. L. Yuille and A. Rangarajan. The concave-convexe procedure. In *Proc. of Advances* in Neural Information Processing Systems, 2001.
- Cun-Hui Zhang, Tong Zhang, et al. A general theory of concave regularization for high-dimensional sparse estimation problems. *Statistical Science*, 27(4):576–593, 2012.
- Tong Zhang. Multi-stage convex relaxation for learning with sparse regularization. In *NIPS*, pages 1929–1936, 2008.

3

イロト 不得下 イヨト イヨト