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Introduction



Supervised learning

Traditional supervised learning

• We want to learn predictor such that

y ≈ f(x), f ∈ F .

• Actual P(X,Y ) unknown.

• We have access to dataset (xi, yi)i=1,...,n

(P̂(X,Y )).

• We choose a loss function L(y, f(x)) that

measure the discrepancy.

For binary classification

• We suppose y ∈ Y = {−1, 1}

• 0 - 1 loss

L(y, f(x)) = 1 yf(x)≤0 =

{
0 if yf(x) > 0

1 if yf(x) ≤ 0

measures the number of classification errors
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Supervised learning
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y ≈ f(x), f ∈ F .

• Actual P(X,Y ) unknown.

• We have access to dataset (xi, yi)i=1,...,n

(P̂(X,Y )).

• We choose a loss function L(y, f(x)) that

measure the discrepancy.

For regression

• We have y ∈ R

• Least squares regression

Ly, f(x) = (y − f(x))2

measures the square errors
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Supervised learning

Traditional supervised learning

• We want to learn predictor such that

y ≈ f(x), f ∈ F .

• Actual P(X,Y ) unknown.

• We have access to training dataset

(xi, yi)i=1,...,n (P̂(X,Y )).

• We choose a loss function L(y, f(x)) that

measure the discrepancy.

Empirical risk minimization

• Empirical risk

R̂(f) = E
(x,y)∼P̂

L(y, f(x)) =
1

n

∑
j

L(yj , f(xj)) (1)

• We seek for a model (predictor) minimizing the empirical risk

f̂ = arg min
f

{
R̂(f)

}
(2)
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Empirical risk minimization and over-fitting

• Should we choose f based on R̂(f̂) ? NO !

• as we can design a sufficiently complex function f̂ ∈ f ∈ F such that R̂(f̂)→ 0

but with high risk R(f̂)

Recall the true expected risk is

R(f) = E
(x,y)∼P

L(y, f(x)) =

∫
P(x, y)L(y, f(x))dxdy

=⇒ Control the complexity of the predictor f
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The paradigm of statistical learning

D = {(xi, yi)}ni=1 Algo A f

x

Error R̂(f)
=

1
n

∑n
i=1 L(f(xi), yi)

Loss L

Hypothesis space F

y

R(f)
=

E(x,y) Ly, f(x)

P(x, y)

P
( )

≤ δ> + ε

With given D, find a model f in a family F (linear, kernel SVM, Deep Network . . . )

with good generalization properties
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Why learning occurs

Supremum on generalization error

Let D = {(xi, yi)}i=1···n be the dataset. Let F b a space of functions. For all f ∈ F ,

with probability 1− δ we have

R(f) ≤ R̂(f) +O

(√
ζ

n
log

2en

ζ
+

log 2/δ

n

)
ζ > 0 measures the ”complexity” of the functions class F

• Generalization occurs whenever ζ <∞

• Prefer n >> ζ (the number of available data increases with model complexity)
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Illustration

Generalization / over-fitting

R(f) ≤
1

n

n∑
i=1

L(f(xi), yi) + term(n, ζ(F))

• R̂(f) = 1
n

∑n
i=1 L(f(xi), yi) is not a good estimator of generalization ability

• Over-fitting appears with the increasing complexity of f
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Complexity control: regularization

Let k1 < k2 < k3 < · · ·

We define Fj = {f : Ω(f) ≤ kj}

Ω(f) : regularisation function

Example : Ω(f) = ‖f‖2

Minimization of the regularized empirical risk

min
f

1

n

n∑
i=1

L(f(xi), yi) + λΩ(f)

• λ > 0: regularization parameter

• λ >> 1→ we encourage f to be of low complexity

Example : SVM minf
1
n

∑n
i=1 L(f(xi), yi) + λ ‖f‖2 with loss

L(y, f(x)) = max(0, 1− yf(x))

Similar scheme is used to regularize the weights of a deep learning model (weight decay)
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In practice

How to choose the ”best” model?

Validation Apprentissage {X app ,Y app }

Données disponibles

Test {X test ,Y test }{X val ,Y val}

1. Randomly split available dataset D = Dtrain ∪ Dval ∪ Dtest
2. Train several models with different levels of ”complexity” on Dtrain
3. Evaluate their performances (classification error, mean square error...) on Dval
4. Select the model with the best performance on Dval
5. Test the selected model on Dtest

Remark

• Dtest is used only once!
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Cross-validation at work

K-Fold Cross-Validation Cross-Validation

Which model to select?
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Implicit assumption

Training data (source) Test data (target)

≈
Remark

• Training and test data are expected to be drawn from the same (unknown) joint

distribution P(X,Y )
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Domain Adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains

Our context

• Classification problem with data coming from different sources (domains).

• Distributions are different but related.

13 / 54



Domain adaptation

What is domain adaptation?

• Differences in instances difference 6=⇒ in the predictions

• Transfer knowledge from previous domain to a new domain to overcome the

differences

• Domains are somehow related
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Supervised domain adaptation

Problems

• Large labeled data are available on source domain but only a few labeled target

data are at disposal in the source domain,

• Classifier trained on the source domain data performs badly in the target domain

15 / 54



Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems

• Labels only available in the source domain, and classification is conducted in the

target domain.

• Classifier trained on the source domain data performs badly in the target domain
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”Supervising” domain adaptation



Transfer Learning

Distribution shift results in drop in performances!
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Transfer Learning

Transfer Learning principle

Train on one (several) task(s), transfer on a new related one

From https://tinyurl.com/ykzxrkwe
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Transfer Learning in deep learning

How to leverage large labeled source dataset to train the target model?

Example of image classification

• Train a base model (AlexNet, VGG16, etc.) using large scale source data (ImageNet) or

upload pre-trained models

• Freeze part or full hidden layers parameters

• Fine-tune unfrozen layers of the base model using the few target labeled data
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Formally

Notations

Source data are labeled Ds = {(xsi , ysi ) ∈ Xs × Ys}ns
i=1

Target samples are only a few Dt = {(xtj , ytj) ∈ Xt}nt
j=1

Joint dis. Marginal dis. Conditional dis. Label dis.

Source Ps(x, y) Ps(x) Ps(y/x) Ps(y)

Target Pt(x, y) Pt(x) Pt(y/x) Pt(y)

Common assumptions

• Same instance and label spaces Xs = Xt and Ys = Yt
• Joint distributions are drifted Ps(x, y) 6= Pt(x, y)

• Covariate shift Ps(x) 6= Pt(x) but Ps(y/x) ' Pt(y/x)

• Label shift Ps(y) 6= Pt(y) but Ps(x/y) ' Pt(x/y)
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Formulation

• Let the source model be fs(x) = gs ◦ h(x) with h: the feature extraction map,

and gs: the classification function

• Train fs on source data

R̂(h, gs) = E
(xs,ys)∼P̂s

L(ys, gs ◦ h(xs)) =
1

ns

∑
j

L(ysi , gs ◦ h(xsi )) (3)

ĝs, ĥ = arg min
gs,h

{
R̂(h, gs)

}
• Target model: ft(x) = gt ◦ h(x). h is shared with both fs and ft

• Keep h unchanged and tune gt

ĝt = arg min
gt

{
E

(xt,yt)∼P̂t

L(yt, gt ◦ h(xt)) =
1

nt

∑
j

L(ytj , gs ◦ h(xtj))

}
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Extension to multiple source domains

• Assume S > 1 source domains (tasks) with models being fs(x) = gs ◦ h(x),

s = 1, . . . , S

• Learn the shared representation function h

R̂(h, g1, · · · , gS) =
1

S

∑
s

E
(xs,ys)∼P̂s

L(ys, gs◦h(xs)) =
1

Sns

∑
s

∑
j

L(ysi , gs◦h(xsi ))

ĥ = arg min
h

min
g1,··· ,gS

{
R̂(h, g1, · · · , gS)

}
• Target model: ft(x) = gt ◦ h(x)

ĝt = arg min
gt

{
E

(xt,yt)∼P̂t

L(yt, gt ◦ h(xt)) =
1

nt

∑
j

L(ytj , gs ◦ h(xtj))

}
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Theoretical guarantees

• Target domain model: ft(x) = gt ◦ h(x) with h the shared representation function

with the source domain model(s)

With probability at least 1− δ, δ ∈ (0, 1) [Tripuraneni et al., 2020]

R(ĝt, ĥ) ≤ R(g∗t , h
∗) + distGt,Gs(ĥ, h∗) + ζ(Gs) + 8B

√
log 2/δ

nt

• Worst-case representation distance

distGt,Gs(ĥ, h∗) = sup
gt∈Gt

inf
gs∈Gs

E
(x,y)

{
L(y, gs ◦ ĥ(x))− L(y, gt ◦ h∗(x))

}
measures the error due to using a biased feature representation ĥ 6= h∗

Generalization error bound depends on the complexity of the hypothesis, on the

distance beetween source domain representation and the suitable target domain

one
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Unsupervised domain adaptation



Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems

• Labels only available in the source domain, and classification is conducted in the

target domain.

• Classifier trained on the source domain data performs badly in the target domain
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Domain adaptation short state of the art

Reweighting schemes [Sugiyama et al., 2008]

• Distribution change across domains.

• Re-weight source samples by
Pt(xs)
Ps(xs)

to

compensate this change.

Subspace methods

• Data is invariant in a common latent subspace.

• Minimization of a divergence between the

projected domains [Si et al., 2010].

• Use additional label information

[Long et al., 2014].

Gradual alignment

• Alignment along the geodesic between source

and target subspace

[R. Gopalan and Chellappa, 2014].

• Geodesic flow kernel [Gong et al., 2012].
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The underlying principle

Problem

We seek for a model f able to work either on source and target domains

Bounding the adaptation risk [Ben-David et al., 2010]

Rt(f) ≤ Rs(f) +Div(Ps(x),Pt(x)) + β

• What we should care about: measure of distribution shift Div(Ps(x),Pt(x))

• What we expect: domain relatedness measured by β = inff Rs(f) +Rt(f)

Most DA strategies

• Choose f with good properties (to get β minimal)

• Minimize distribution discrepancy
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Some recent DA methods

Domain adversarial network [Ganin et al., 2016]

• Mapping source and target instances onto a domain-invariant latent subspace

• Ensure good prediction on source domain
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Some recent DA methods

Joint adaptation network [Long et al., 2017]

• Jointly align feature distributions across layers

• Based on kernel Maximum Mean Discrepancy between layer activation

distributions Div(Ps(x), Pt(x)) ≡ ‖mz(Ps)−mz(Pt)‖2H
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Some recent DA methods

Optimal transport domain adaptation [Courty et al., 2016]

• Estimate a push-forward operator T between source and target distributions

• Map source samples onto target domain

• Learn a classification function
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The origins of optimal transport

Problem [Monge, 1781]

• How to move dirt from one place (déblais) to another (remblais) while minimizing

the effort ?

• Find a mapping T between the two distributions of mass (transport).

• Optimize with respect to a displacement cost c(x, y) (optimal).
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The origins of optimal transport
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Optimal transport (Monge formulation)

0 20 40 60 80 100
x,y

Distributions

0 20 40 60 80 100
y

Quadratic cost c(x, y) = |x y|2

c(20, y)
c(40, y)
c(60, y)

• Probability measures µs and µt on and a cost function c : Ωs × Ωt → R+.

• The Monge formulation [Monge, 1781] aim at finding a mapping T : Ωs → Ωt

inf
T#µs=µt

∫
Ωs

c(x, T (x))µs(x)dx (4)

• Non-convex optimization problem, mapping does not exist in the general case.

• [Brenier, 1991] proved existence and unicity of the Monge map for

c(x, y) = ‖x− y‖2 and distributions with densities.
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Optimal transport (Kantorovich formulation)

y
x

Joint distribution (x, y) = s(x) t(y)

Source s(x)
Target t(y)
(x, y)

y
x

Transport cost c(x, y) = |x y|2

c(x, y)

• The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic

coupling γ ∈ P(Ωs × Ωt) between Ωs and Ωt:

γ0 = argmin
γ

∫
Ωs×Ωt

c(x,y)γ(x,y)dxdy, (5)

s.t. γ ∈ U =

{
γ ≥ 0,

∫
Ωt

γ(x,y)dy = µs,

∫
Ωs

γ(x,y)dx = µt

}
• γ is a joint probability measure with marginals µs and µt.

• Linear Program that always have a solution.
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Optimal transport with discrete distributions

Distributions
Source s

Target t

Matrix C OT matrix                   

OT Linear Program
When µs =

∑n
i=1 aiδxs

i
and µt =

∑n
i=1 biδxt

i

γ0 = argmin
γ∈U

{
〈γ,C〉F =

∑
i,j

γi,jci,j

}

where C is a cost matrix with ci,j = c(xsi ,x
t
j) and the marginals constraints are

U =
{
γ ∈ (R+

)
ns×nt | γ1nt = a,γ

T
1ns = b

}
Linear program with nsnt variables and ns + nt constraints. Demo
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Optimal transport with discrete distributions

Distributions

Source s

Target t

Matrix C OT matrix with samples
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Wasserstein distance

Wasserstein distance

W p
p (µs, µt) = min

γ∈U

∫
Ωs×Ωt

c(x,y)γ(x,y)dxdy = E(x,y)∼γ [c(x,y)] (6)

where c(x,y) = ‖x− y‖p

• A.K.A. Earth Mover’s Distance (W 1
1 ) [Rubner et al., 2000].

• Do not need the distribution to have overlapping support.

• Subgradients can be computed with the dual variables of the LP.

• Works for continuous and discrete distributions (histograms, empirical).
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Efficient regularized optimal transport

Distributions

Source s

Target t

Reg. OT matrix with =1e-3 Reg. OT matrix with =1e-2

Entropic regularization [Cuturi, 2013]

γλ0 = argmin
γ∈U

〈γ,C〉F − λΩ(γ), (7)

where Ω(γ) = −
∑
i,j γ(i, j) log γ(i, j) computes the entropy of γ and

U =
{
γ ∈ (R+)ns×nt | γ1nt = a,γT1ns = b

}
.

• Entropy introduces smoothness.

• Sinkhorn-Knopp algorithm (efficient implementation in parallel, GPU).
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Resolving the entropy regularized problem

Entropy-regularized transport

The solution of entropy regularized optimal transport problem is of the form

γλ0 = diag(u) exp(−C/λ)diag(v)

Why ? Consider the Lagrangian of the optimization problem:

L(γ,u,v) =
∑
ij

γijCij + λγij(log γij − 1) + uT(γ1nt − a) + vT(γT1ns − b)

∂L/∂γij = Cij + λ log γij + ui + vj

∂L/∂γij = 0 =⇒ γij = exp
(ui
λ

)
exp

(
−Cij

λ

)
exp

(vj
λ

)

• Through the Sinkhorn theorem diag(u) and diag(v) exist and are unique.

• Can be solved by the Sinkhorn-Knopp algorithm (implementation in parallel,

GPU).
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Sinkhorn-Knopp algorithm

The Sinkhorn-Knopp algorithm performs alternatively a scaling along the rows and

columns of K = exp(−C
λ

) to match the desired marginals.

Algorithm 1 Sinkhorn-Knopp Algorithm (SK).

Require: a,b,C, λ

u(0) = 1,K = exp(−C/λ)

for i in 1, . . . , nit do

v(i) = b�K>u(i−1) // Update right scaling

u(i) = a�Kv(i) // Update left scaling

end for

return T = diag(u(nit))Kdiag(v(nit))

• Complexity O(kn2), where k iterations are required to reach convergence

• Fast implementation in parallel, GPU friendly

• Convolutive/Heat structure for K [Solomon et al., 2015]
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Optimal transport for domain adaptation



Optimal transport for domain adaptationDataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Assumptions

• There exists an OT mapping T in the feature space between the two domains.

• The transport preserves the joint distributions:

Ps(xs, y) = Pt(T (xs), y).

3-step strategy [Courty et al., 2016]

1. Estimate optimal transport between distributions.

2. Transport the training samples on target domain.

3. Learn a classifier on the transported training samples.

Can be done the other way but needs a mapping for new samples.
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Why does OTDA it work?

Expected risk

Let Rs(f) be the expected risk of function f on the source domain.

Rs(f) := E(x,y)∼Ps [L(y, f(x))] . (8)

Rt(f) is the expected risk in the target domain.

Generalization bound [Flamary et al., 2019]

Let f be a prediction rule in the source domain with a Lispschitz constant Mf and Rp

the expected risk on domain p with a Lispschitz continuous loss L of constant ML.

Under the OTDA assumptions we have the following generalization bound

Rt(f ◦ T̂−1) ≤ Rs(f) +MfMLE(x,y)∼Ps

[
‖T̂−1(T (x))− T̂−1(T̂ (x))‖

]
(9)

• Train a classifier f on source and estimate a mapping T̂−1 from target to source.

• True for any mapping T .

• Need out of sample mapping T̂−1 (to map new target samples).
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Mapping with optimal transport
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Monge mapping estimation

• Mapping do not exist in general between empirical distributions.

• Barycentric mapping [Ferradans et al., 2014].

• Smooth mapping estimation [Perrot et al., 2016, Seguy et al., 2017].

• Closed form exist for transport between Gaussian distributions.

• Question of estimating the Monge Mapping: still an open problem theory

suggests very hard (O(n−1/d) [Hütter and Rigollet, 2019]) .
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Transporting the discrete samples

Distributions

Source s

Target t

Classt OT Reg. Entropic OT

Barycentric mapping [Ferradans et al., 2014]

T̂γ0
(xsi ) = argmin

x

∑
j

γ0(i, j)c(x,xtj). (10)

• The mass of each source sample is spread onto the target samples (line of γ0).

• The mapping is the barycenter of the target samples weighted by γ0

• Closed form solution for the quadratic loss.

x̂si = argmin
x

∑
j

γ0(i, j)c(x,xtj). (11)

X̂s = diag(γ01nt)
−1γ0Xt and X̂t = diag(γ>0 1ns)−1γ>0 Xs. (12)
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Transporting the discrete samples

Distributions

Source s

Target t

Classic OT (LP) Reg. Entropic OT

Barycentric mapping [Ferradans et al., 2014]

T̂γ0
(xsi ) = argmin

x

∑
j
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Transporting the discrete samples
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Special case: OT mapping between Gaussians
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OT mapping between Gaussian distributions
• µs ∼ N (m1,Σ1) and µt ∼ N (m2,Σ2)

• The optimal map T for c(x,y) = ‖x− y‖22 is given by

T (x) = m2 +A(x−m1)

with A = Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 .

• Can be estimated from empirical distributions.

• Linear mapping for any distributions with a density [Flamary et al., 2019].
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Expected error for Linear Monge mapping estimation

Empirical estimation of linear Monge mapping

• Empirical estimation of Gaussian parameters for µ1 and µ2.

• n1 samples from µ1, n2 samples from µ2.

• Estimate T̂ with closed form solution.

Theorem ([Flamary et al., 2019])

Let µ1 and µ2 be sub-Gaussian distributions with expectations m1,m2 and

positive-definite covariance operators Σ1, Σ2 respectively with eigenvalues in [c, C] for

some fixed absolute constants 0 < c ≤ C <∞. We also assume that

nj ≥ Cr(Σj), j = 1, 2, for some sufficiently large numerical constant C > 0.

Then, for any t > 0, we have with probability at least 1− e−t − 1
n1

,

E
s∼µ1

‖T (x)− T̂ (x)‖ ≤ C′
(√

r(Σ1)

n1
∨
√

r(Σ2)

n2
∨
√

t

n1 ∧ n2
∨ t

n1 ∧ n2

)√
r(Σ1),

where C′ > 0 is a constant independent of n1, n2, r(Σ1), r(Σ2) and r(B) = tr(B)
λmax(B)

.
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OTDA Generalization bound

Estimator in source domain
Let HK be a reproducing kernel Hilbert space (RKHS) associated with a symmetric

nonnegatively definite kernel K : Rd × Rd → R We consider the following empirical

risk minimization estimator:

f̂nl := argmin‖f‖HK
≤1

1

nl

nl∑
i=1

l(Y li , f(Xl
i)). (13)

where we assume that the eigenvalues of the integral operator TK of HK decrease

with λk � k−2β for some β > 1/2 (see [Mendelson, 2002]).

OTDA generalization bound
If Rs(f

s
∗ ) = Rt(f

t
∗) and T̂ is the linear monge mapping estimator, under the

assumptions of OTDA, we get with probability at least 1− e−t − 1
n1

,

Rt(f̂nl ◦ T̂
−1)−Rt(f t∗) . n

−2β/(1+2β)
l +

t

nl

+MfML

√r(Σ2)

n2
∨

√
r(Σ1)

n1
∨
√

t

n1 ∧ n2
∨

t

n1 ∧ n2

√r(Σ1).
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Linear Monge mapping on images

Numerical experiments

• Split MNIST dataset in two non-overlapping empirical distributions.

• Apply linear motion blur to the target distribution.

• Estimate mapping and transport source samples.

• Convolutional Monge Mapping for important speedup (FFT).
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Linear Monge mapping on images
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Optimal transport for domain adaptationDataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Discussion

• Works very well in practice for large class of transformation [Courty et al., 2016].

• Can use estimated mapping [Perrot et al., 2016, Seguy et al., 2017].

• Nice generalization bound for linear Monge mappings [Flamary et al., 2019].

But

• Model transformation only in the feature space.

• Requires the same class proportion between domains Ps(y) ≈ Pt(y) (no label

shift) [Tuia et al., 2015].

• We estimate a T : Rd → Rd mapping for training a classifier f : Rd → R.
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Joint distribution OT for domain

adaptation (JDOT)



Joint distribution and classifier estimation

Main idea

• Objectives : allow changes in the label space i.e. Ps(y) 6= Pt(y), learn directly a

target predictor f .

• Joint feature/labels distribution P̂s(xs, ys) in source, only marginal feature

distribution µ̂t = P̂t(xt) in target.

• Wasserstein needs the two distributions P̂s(xs, ys) and P̂t(xt, yt)

• Use a proxy distribution: P̂t
f

= P̂t
f
(xt, f(xt)) = 1

Nt

∑Nt
i=1 δxt

i,f(xt
i)
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Joint Distribution Optimal Transport for DA (JDOT)

x

y
Training data

s

t

x

y

JDOT model with f
t

f(x)
s

f
t

Learning with JDOT [Courty et al., 2017]

min
f

{
W1(P̂s, P̂t

f
) = inf

γ∈Π

∑
ij

D(xsi ,y
s
i ;x

t
j , f(xtj))γij

}
(14)

• P̂t
f

= 1
Nt

∑Nt
i=1 δxt

i,f(xt
i) is the proxy joint feature/label distribution.

• D(xsi ,y
s
i ;x

t
j , f(xtj)) = α‖xsi − xtj‖2 + L(ysi , f(xtj)) with α > 0.

• We search for the predictor f that better align the joint distributions.

• OT matrix does the label propagation (no mapping).

• JDOT can be seen as minimizing a generalization bound.
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Generalization bound (1)

We define a novel version of the Probabilistic Lipschitzness:

Probabilistic Lipschitzness [Urner et al., 2011, Ben-David et al., 2012]
Let φ : R→ [0, 1]. A labeling function f : Ω→ R is φ-Lipschitz with respect to a

distribution P over Ω if for all λ > 0

Prx∼P [∃y : [|f(x)− f(y)| > λd(x, y)]] ≤ φ(λ).

Probabilistic Transfer Lipschitzness
Let µs and µt be respectively the source and target distributions. Let φ : R→ [0, 1]. A

labeling function f : Ω→ R and a joint distribution γ(µs, µt) over µs and µt are

φ-Lipschitz transferable if for all λ > 0:

Pr(x1,x2)∼γ(µs,µt) [|f(x1)− f(x2)| > λd(x1,x2)] ≤ φ(λ).
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Generalization bound (2)

Theorem 1

Let f be any labeling function of ∈ H. Let

γ∗ = argmin
γ∈Π(Ps,Pf

t )

∫
(Ω×C)2 αd(xs,xt) + L(ys, yt)dγ(xs, ys;xt, yt) and W1(P̂s,

ˆPf
t ) the

associated 1-Wasserstein distance. Let f∗ ∈ H be a Lipschitz labeling function that verifies the

φ-probabilistic transfer Lipschitzness (PTL) assumption w.r.t. γ∗ and that minimizes the joint error

Rs(f
∗) + Rt(f

∗) w.r.t all PTL functions compatible with γ∗. We assume the input instances are

bounded s.t. |f∗(x1)− f∗(x2)| ≤M for all x1,x2. Let L be any symmetric loss function, k-Lipschitz

and satisfying the triangle inequality. Consider a sample of Ns labeled source instances drawn from Ps and

Nt unlabeled instances drawn from µt, and then for all λ > 0, with α = kλ, we have with probability at

least 1− δ that:

Rt(f) ≤ W1(P̂s, ˆPft ) +

√
2

c′
log(

2

δ
)

(
1√
ns

+
1√
nt

)
+Rs(f

∗) +Rt(f
∗) + kMφ(λ).

• First term is JDOT objective function.

• Second term is an empirical sampling bound.

• Last terms are usual in DA [Mansour et al., 2009, Ben-David et al., 2010].
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Optimization problem

min
f∈H,γ∈U

∑
i,j

γi,j
(
αd(xsi ,x

t
j) + L(ysi , f(xtj))

)
+ λΩ(f) (15)

Optimization procedure

• Ω(f) is a regularization for the predictor f

• We propose to use block coordinate descent (BCD)/Gauss Seidel.

• Provably converges to a stationary point of the problem.

γ update for a fixed f

• Classical OT problem.

• Solved by network simplex.

• Regularized OT can be used

(add a term to problem (15))

f update for a fixed γ

min
f∈H

∑
i,j

γi,jL(ysi , f(xtj)) + λΩ(f) (16)

• Weighted loss from all source labels.

• γ performs label propagation.
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Regression with JDOT
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Least square regression with quadratic regularization
For a fixed γ the optimization problem is equivalent to

min
f∈H

∑
j

1

nt
‖ŷj − f(xtj)‖2 + λ‖f‖2 (17)

• ŷj = nt
∑
j γi,jy

s
i is a weighted average of the source target values.

• Can use any solver (linear, kernel ridge, neural network).
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Classification with JDOT
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Multiclass classification with Hinge loss
For a fixed γ the optimization problem is equivalent to

min
fk∈H

∑
j,k

P̂j,kL(1, fk(xtj)) + (1− P̂j,k)L(−1, fk(xtj)) + λ
∑
k

‖fk‖2 (18)

• P̂ is the class proportion matrix P̂ = 1
Nt

γ>Ps.

• Ps and Ys are defined from the source data with One-vs-All strategy as

Y si,k =

{
1 if ysi = k

−1 else
, P si,k =

{
1 if ysi = k

0 else

with k ∈ 1, · · · ,K and K being the number of classes.

50 / 54



DeepJDOT

g

g

+

+

min
γ∈Π,f,g

1

ns

∑
i

Ls (ysi , f(g(xsi )))+
∑
i,j

γij
(
α‖g(xsi )− g(xtj)‖2 + λtL

(
ysi , f(g(xtj))

))
.

(19)

DeepJDOT [Damodaran et al., 2018]

• Learn simultaneously the embedding g and the classifier f .

• JDOT performed in the joint embedding/label space.

• Use minibatch to estimate OT and update g, f at each iterations.

• Scales to large datasets and estimate a representation for both domains.
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DeepJDOT

g

g

+

+

min
f,g

E

 1

m

m∑
i=1

L (ysi , f(g(xsi )) + min
γ∈Π

m∑
i,j

γij
(
α‖g(xsi )− g(xtj)‖2 + λtL

(
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DeepJDOT in action

DeepJDOT [Damodaran et al., 2018]

• Evaluation of DeepJDOT on visual classification tasks.

• Digit adaptation between MNIST, USPS, SVHN, MNIST-M.

• Home-office [Venkateswara et al., 2017] and VisDA 2017 [Peng et al., 2017]

dataset.

• Ablation study : all terms are important.

• TSNE projections of embeddings (MNIST→MNIST-M).
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Conclusion



Conclusion on optimal transport for domain adaptation

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 

Optimal transport for DA

• Model transformation of the features.

• Joint distribution preserved.

• Mapping between distributions.

• Learn classifier on the transported

samples.

• Generalization bound when mapping

estimation bounded.

Joint distribution OT for DA

• Model transformation of the joint

distribution.

• General framework for DA.

• Estimate directly the predictor.

• Theoretical justification with

generalization bound.

• Can also estimate feature extraction.
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Thank you

Python code available on GitHub:

https://github.com/rflamary/POT

• OT LP solver, Sinkhorn (stabilized, ε−scaling, GPU)

• Domain adaptation with OT.

• Barycenters, Wasserstein unmixing.

• Wasserstein Discriminant Analysis.

Python code for JDOT on GitHub:

https://github.com/rflamary/JDOT

Papers available on my website:

https://remi.flamary.com/

Post docs available in: Nice (France)
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