
A Multiple Kernel Framework for Inductive

Semi-supervised SVM Learning

Xilan Tian, Gilles Gasso and Stéphane Canu

LITIS EA-4108 - INSA de Rouen

Avenue de l’Université - 76801, St Etienne du Rouvray, France

Abstract

We investigate the benefit of combining both cluster assumption and man-
ifold assumption underlying most of the semi-supervised algorithms using
the flexibility and the efficiency of multiple kernel learning. The multiple
kernel version of Transductive SVM (a cluster assumption based approach)
is proposed and it is solved based on DC (Difference of Convex functions)
programming. Promising results on benchmark data sets and the BCI data
analysis suggest and support the effectiveness of proposed work.

Keywords: Multiple kernel learning, inductive semi-supervised learning,
transductive SVM, DC programming, BCI application

1. Introduction

The importance gained by semi-supervised learning these past years is
due to the difficulty to label the increasing size data sets in order to apply
well-established supervised algorithms. Indeed, in many applications such as
text classification, image categorization, spam detection or Brain Computer
Interface (BCI), data labelling can be costly, time consuming or inappropri-
ate. To illustrate our words we will carry the example of BCI application we
are particularly interested in. When applying machine learning approachs to
BCIs, one needs labeled data to teach the classifier. To this end, the user
ususally performs a tedious calibration measurement before starting with BCI
feedback applications. To reduce this process, existing literatures resort to

Email address: {xilan.tian, gilles.gasso, stephane.canu}@insa-rouen.fr

(Xilan Tian, Gilles Gasso and Stéphane Canu)

Preprint submitted to Neurocomputing December 14, 2011

semi-supervised learning, including self-training algorithm [1, 2], co-training
algorithm [3], transductive SVM (TSVM) [4], graph-based methods [5], and
so forth.

All these algorithms made strong model assumptions to deal with limited
labeled data and available amount of unlabeled data. Common hypotheses
are cluster assumption and manifold assumption. The first assumption aims
to enforce two training points (labeled or not) that fall in the same cluster to
share the same label. The resulting algorithms prefer decision function avoid-
ing high density regions [6, 7, 8]. The second assumption rather promotes
data geometry to enforce smoothness of the labels prediction over manifolds
using similarity graph-based methods [9, 10, 11].

In practice, it is unclear whether and when one assumption should be
preferred over the other. Nevertheless, empirical evidences have shown that
the choice is application dependent and it was recommended in [12] to dig
the combination of both assumptions in a single framework in order to ex-
pect beneficial effect in terms of classification performances. To reach this
goal, some approaches were proposed in the literature [13, 14, 15, 16]. The
limitations of these models always reside in the high computation complexity
or the transductive nature, and limited to deal with out-off-samples. More
discussion of these algorithms will be presented in Section 5.

Our approach of solution proposes a multiple kernel version of Transduc-
tive SVM to embed both cluster view and the manifold view. For this sake,
we consider a pool of kernels, some implementing similarity graph constraints
or different a priori informations and we design an efficient learning algorithm
based on previous supervised multiple kernel learning [17] to select the kernels
suited for our semi-supervised application. This leads us to formulate a mul-
tiple kernel TSVM which inherits the non-convexity (and non-smoothness) of
TSVM. The optimization algorithm we propose comes with the usual caveats
of non-convex problems. It is built upon DC (difference of convex functions)
algorithm [18] and is able to find in an efficient way a local solution. As
a solution, we get an inductive classifier extendable to unseen samples and
thereby alleviate the drawbacks of method in [15]. Our algorithm presents
another interesting feature, thanks to the flexibility of kernel methods: in
BCI systems, different mental tasks induce the responses in different brain
regions. As stated in [19], automated channel selection should be performed
for each single subject since it leads to better performance or a substantial
reduction of the number of useful channels. The proposed algorithm can be
extended to this task by assigning the same weight to a group of kernels re-

2

lated to a channel. Experimental results demonstrate the compelling validity
of the strategy.

This paper is organized as follows. In Section 2, we review the background
of semi-supervised SVMs. In Section 3, we formally present the multi-kernel
framework of TSVM, which combines the cluster assumption and manifold
assumption in one learning task. In Section 4, we derive the optimization
algorithm used to solve the problem. Connections our approach to related
algorithms are detailed in Section 5. In Section 6, we report the experimental
results on a series of benchmark data sets and demonstrate the effectiveness
of our algorithm. Section 7 is devoted to the application of our approach to
BCI data analysis, especially for channel selection. Finally, some conclusions
and forthcoming work end up the paper.

2. Semi-supervised SVMs

Let D= {x1, ...,xℓ+u} denote the entire data set. Without loss of general-
ity, we assume the first ℓ samples are labeled {(xi, yi) ∈ X × {−1, 1}

ℓ
i=1 and

followed by u unlabeled samples {xi}
ℓ+u
i=ℓ+1. The unknown labels are binary

entries of the vector yu = [yℓ+1 . . . yℓ+u]
T.

2.1. Problem setting: preliminaries

We begin with reviewing the semi-supervised learning set in SVM frame-
work. The aim of semi-supervised SVMs is to learn an SVM that exploits the
information conveyed by the unlabeled data. The general picture is to de-
termine a decision function able to classify the labeled data and to correctly
predict the class of unlabeled samples while maximizing the margin. Gener-
ally speaking, Semi-Supervised SVM algorithms rely on the optimization of
the following generic objective function

Ω(f) + C

ℓ
∑

i=1

V (yig(xi)) + C∗

ℓ+u
∑

i=ℓ+1

U(g(xi)) (1)

where the decision function is defined as g(x) = f(x)+b with f , a function in
a Reproducing Kernel Hilbert Space (RKHS) H and b a real scalar. The first
term in (1) represents the regularization term which aims at controlling the
complexity of f . The two last terms are respectively the fitting errors for the
labeled and unlabeled samples which are evaluated through the margin loss

3

functions V (labeled data) and U (unlabeled data). The regularization pa-
rameters C and C∗ balance the importance of those errors in the optimization
process.

From this general problem, two main families of learning problems were
derived based on particular assumptions beneath the marginal distribution
P (X) of the data, namely the cluster assumption which has led to TSVM
[6, 20] and the manifold assumption giving rise to Laplacian SVM [11]. The
formulations of these methods are described below.

2.2. TSVM

TSVM implements the first strategy termed as cluster assumption [21]
which postulates that two points that belong to the same cluster (that is
points connected via high-density paths) likely share the same label. There-
fore it promotes decision function avoiding high density regions. In its first
version, TSVM attempts to solve the following problem [20, 8, 12]

min
f,b,yu

1

2
‖f‖2H + C

ℓ
∑

i=1

V (yig(xi)) + C∗

ℓ+u
∑

i=ℓ+1

U(yig(xi)) (2)

where V and U employ the same loss, e.g. hinge loss or its square version:

V (z) = Hs(z)
q with q ∈ {1, 2} and (3a)

Hs(z) = max(0, s− z), 0 ≤ s ≤ 1. (3b)

To avoid the trivial solution where the unlabeled data are all assigned to the
same class, a balancing constraint is added to the problem

1

u

ℓ+u
∑

i=ℓ

max(0, yi) = r. (4)

This constraint enforces a chosen proportion r of unlabeled samples in the
positive class. Problem (2) presents a cumbersome aspect: the optimization
is carried over the unknown and discrete labels yu and continous variables
(f, b) rendering the standard optimization methods inapplicable.

A review and comparison of algorithms to address this problem is ex-
posed in [12]. Roughly speaking, the existing approaches can be divided in
two categories: the first category includes combinatorial techniques which
attempt to solve directly problem (2) while the second category transforms
the original problem in order to eliminate the unknown labels yu. A brief
description of these methods is presented hereafter.

4

2.2.1. Combinatorial methods

Their finality is oriented toward a transductive learner. Among existing
scalable approaches, one can point out S3VMlight [8], a well-known software.
It is based on labels-switching-model retraining procedure to find a local
minimum of the optimization problem.

To get rid of the discrete labels, a relaxation is possible: the labels yu are
replaced with a continuous vector p with entries pi = P(yi = 1) traducing
the probability to assign xi to the positive class. Then the objective function
of the problem reads [22, 23]:

J(f, b,p) =
1

2
‖f‖2H + C

ℓ
∑

i=1

V (yig(xi)) + C∗

ℓ+u
∑

i=ℓ+1

(piU(g(xi)) + (1− pi)U(−g(xi)))

Sindhwani et al. [22] have proposed to solve this new problem via determinist
annealing (DA) method. For this sake a regularizing entropy term on p is
included in the process. Also, an adaptation of the balancing constraint (4)
is adopted leading finally to the problem [22]:

min
(f,b),p

J(f, b,p)− T
ℓ+u
∑

i=ℓ+1

(pi log(pi) + (1− pi) log(1− pi)) (5a)

s.t.
1

u

ℓ+u
∑

i=ℓ

pi = r (5b)

with T ≥ 0. DA approach starts from an “easy”problem, and gradually
deforms it to the TSVM objective function. It is guaranted to converge
toward a local solution.

2.2.2. Continuous methods

These techniques do not focus on unknown labels estimation but rather
seek an inductive semi-supervised classifier. Indeed, problem (2) can be seen
equivalently as

min
f,b

1

2
‖f‖2H + C

ℓ
∑

i=1

V (yig(xi)) + C∗
ℓ+u
∑

i=ℓ+1

U(|g(xi)|) (6)

While it solely involves continuous unknowns, this problem is highly non-
convex as the loss function U(|z|) is non-convex and non-smooth. This fact

5

is illustrated in figure 1(b). Numerous optimization methods exist, their pre-
sentation and comparison are beyond the scope of this article. However, let
mention that these methods employ gradient techniques, continuation meth-
ods, Newton based methods, convex-concave procedure (see [12] for a review)
to find a local minimum of the problem. There is no convincing evidence of
the superiority of a particular method. Nevertheless, we will mainly be con-
cerned in the sequel by convex-concave algorithms [24, 25, 23] which prove
efficient in practice and are able to handle large scale applications. Pre-
cisely, we will build upon algorithm of Collobert et al. [24], one of the fastest
methods capable to deal with kernels 1 and exhibits the advantage to be eas-
ily adaptable to semi-supervised multiple kernel learning using off-the-shelf
toolboxes. The adaptation of this algorithm to our concern is exposed in sec-
tion 4. Before delving into these details, let examine the second assumption
exploited by semi-supervised SVM learning.

−2 0 2
0

1

2

3

4
Hinge Loss

z

V
(z

)
=

 m
ax

(0
,s

−
z)

(a) Hinge loss H1(z)

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1
Symmetric Hinge Loss

z

U
(|

z|
)

=
 m

ax
(0

,s
−

|z
|)

(b) Symmetric hinge loss H1(|z|)

Figure 1: Illustration of the non-convexity of the loss function dealing with unlabeled data
if we consider the classical hinge loss V (z) = H1(z) and U(|z|) = H1(|z|).

2.3. Laplacian SVM

The principle of Laplacian SVM roots in graph-based methods. Its un-
derlying hypothesis assumes the data lie on low dimensional manifolds the
decision function should avoid to traverse. The manifold framework considers

1The algorithm of Zhao et al. [25] exploits cutting plane procedure. It is limited to
the linear case as its kernelization will require the computation of the coordinates of each
sample in a KPCA basis. This operation will harm computation efficiency especially in
multiple kernel context we explore hereafter.

6

that if two points are close in the intrinsic geometry of the marginal distribu-
tion P (X) of the data, they share the same conditional density i.e. if xi ∼ xj

along the manifold, then g(xi) ∼ g(xj). To enforce the smoothness of g along
the manifold, a graph is used to measure proximity of samples (labeled points
as well as unlabeled ones). Compared to equation (1), Laplacian SVM set
C∗ to zero and transfers the influence of the unlabeled in a data-dependent
manifold regularization. The corresponding optimization problem is

min
(f,b)

γA
2
‖f‖2H +

γI
2
‖f‖2M +

ℓ
∑

i=1

V (yig(xi)) (7)

where γA and γI specify a trade-off between ambient regularization and man-
ifold deformation. The term ‖f‖2M models the smoothness assumption over
the manifold M and can be approximated as ‖f‖2M = gT

Lg [11] where
g = [g(x1) . . . g(xℓ+u)]

T and L the laplacian 2 of the neighborhood graph
which vertices are the training samples.

Let the decision function g belong to an RKHS H induced by the kernel
function κ. A nice property of this manifold regularization was established
by Sindhwani et al. [26] and stated that problem (7) can be advantageously
replaced by a classical SVM only over the labeled data with a deformation
kernel k̃ expressed as

κ̃(xi,xj) = κ(xi,xj)− kT

xi
(I+MK)−1Mkxj

(8)

with kx = [κ(x1,x) . . . κ(xℓ+u,x)]
T. The point cloud norm matrix is M =

γI
γA

L
p, p being an integer. This property will easy the inclusion of manifold

assumption in TSVM through our proposed semi-supervised multiple kernel
learning scheme. The formulation of the latter problem is the matter of the
next section.

2Let W be the adjacency matrix of the similarity graph with weights Wij =
exp

(

−‖xi − xj‖
2/2σ2

L

)

, if xi and xj are neighbors and zero otherwise. The neighbor-
hood of each sample is defined according to its N nearest neighbors and σL provides the
width of similarity measure in the N neighbors. Let D be a diagonal matrix such that
Dii =

∑

j Wij . The Laplacian is defined as L = D −W. A normalized variant of this

Laplacian can be computed by Ln = (I−D
−1

W).

7

3. Multiple kernel learning for TSVM

Multi-kernel learning (MKL) is a way to incorporate information from
different sources to tackle a learning problem in the kernel machinery frame-
work. Numerous efficient methods were proprosed recently [17, 27, 28]. Given
a set of m kernels κk, these methods aim at learning a linear combination of
the kernels i.e. κ(xi,xj) =

∑

k dkκk(xi,xj) with dk ≥ 0.
Inspiring from the supervised MKL learning, we propose, based on equa-

tion (6), the following formal setup for our TSVM-MKL problem:

min
fk,b,d≥0

1

2

m
∑

k=1

ak
dk
‖fk‖

2
Hk

+ C

ℓ
∑

i=1

V (yig(xi)) + C∗

ℓ+u
∑

i=ℓ+1

U(|g(xi)|) (9a)

s.t. ‖d‖1 ≤ 1 (9b)

1

u

ℓ+u
∑

i=ℓ+1

g(xi) =
1

ℓ

ℓ
∑

i=1

yi (9c)

with the convention t
0
= 0 whenever t = 0 and ∞ otherwise. Here the

decision function is defined as g(x) =
∑m

k=1 fk(x)+ b, where fk are functions
defined over different RHKSs induced by different kernels κk. Those kernels
can be defined according to some a priori knowledge. In the context of
this paper, the kernels will preferably defined in order to bind manifold and
cluster assumptions in a single framework. The vector d with entries dk
(1 ≤ k ≤ m) acts as the selector of appropriate kernels (or assumptions).
We enforce through equation (9b) a ℓ1-norm penalization on d to promote
sparsity over selected kernels. Finally, ak is a normalization term, usually
set as the trace of the kernel matrix Kk induced by κk. Before we discuss
solution of problem (9), let precise some elements of its formulation.

Balancing constraint

Continuation methods (see section 2.2.2) for TSVM suffer drawback of
unlabeled data assigned to only one class if a balancing constraint is not
imposed. Hence, an approximation of (4) writes 1

u

∑ℓ+u
i=ℓ+1 g(xi) = 2r−1 [12]

with r, the proportion of positive samples. Unfortunately, r is unknown; it is
replaced in practice by r = 1

2ℓ

∑ℓ
i=1(1+ yi) which brings us to the constraint

(9c).

8

−2 0 2

−2

−1

0

1

2

z

s

(a) Ramp loss Rs(z)

−2 0 2

−2

−1

0

1

2

3

z

(b) Convex hinge loss H1(z)

−2 0 2

−2

−1

0

1

2

z

s

(c) Concave hinge loss −Hs(z)

−2 0 2

0

0.5

1

z

−s s

(d) Clipped ramp loss

Figure 2: Illustration of the Ramp loss Rs(z) = H1(z)−Hs(z) and the clipped symmetric
hinge loss function U(|z|) for unlabeled data.

Loss functions

Usually, the problem is simplified by one considering the loss function
V (z) as the popular hinge loss leading to the shapes in figure 1 related to
labeled data and unlabeled data costs respectively. However, one effective
approximation of the symmetric hinge loss was a clipped variant [24] which
can be expressed as

U(|z|) = Rs(z) +Rs(−z)− (1− s). (10)

Here Rs(z) is the Ramp loss defined as Rs(z) = H1(z) − Hs(z) with the
expression (3b) of Hs(z). Figure 2 shows the Ramp loss function and the
clipped symmetric hinge loss for unlabeled data. The main invoked reason
at the favor of the clipped symmetric hinge loss is the gain of sparsity in the
number of support vectors yielded by the optimizer [24].

As a direct consequence of expression (10), solving the optimization prob-
lem with the clipped symmetric hinge function is equivalent to solve a clas-
sical SVM with the labeled data and also the unlabeled data counted twice

9

with the artificial labels {−1, 1}. Hence, without loss of generality and in ac-
cordance with [24], we adopt the following convention for the putative labels
of unlabeled samples: we set yi = 1 when ℓ + 1 ≤ i ≤ ℓ + u, and yi = −1
when ℓ+u+1 ≤ i ≤ ℓ+2u. Although this trick facilitates the use of efficient
off-the-shelves SVM solvers, it increases the complexity of the problem.

New formulation of TSVM-MKL

Based on previous analyses, the following new TSVM-MKL optimization
problem is attained:

min
fk,b,d≥0

1

2

m
∑

k=1

ak
dk
‖fk‖

2
Hk

+ C
ℓ
∑

i=1

H1(yig(xi)) + C∗
ℓ+2u
∑

i=ℓ+1

Rs(yig(xi))

(11a)

s.t. ‖d‖1 ≤ 1 (11b)

1

u

ℓ+u
∑

i=ℓ+1

g(xi) =
1

ℓ

ℓ
∑

i=1

yi. (11c)

To address it, we resort to DC (Difference of Convex functions) algorithm
[18] which is closely related to the Concave Convex Procedure (CCCP) [29].

4. Solving the multiple kernel TSVM problem

TSVM-MKL inherits the non-convexity and non-smoothness of TSVM
which is related to the clipped symmetric hinge loss. Similar to [24], we em-
ploy the DC programming to circumvent this shortcoming of TSVM. Hence,
we begin with reviewing the materials of DC programming. Next we present
its application to handle problem (11).

4.1. Principle of DC programming

Consider the general case of a non-convex optimization problem: minθ J(θ).
DC programming decomposes the criterion J(θ) as the difference of two con-
vex functions (the decomposition is not unique) J(θ) = J1(θ) − J2(θ) and
solves iteratively the problem. The iterative scheme yielded is summarized
by Algorithm 1, where at each iteration the concave part (−J2(θ)) of the cost
function is approximated by its affine minorization. Notice that in relation
(12), ∇θJ2(θ

t) denotes a subgradient of J2. One can easily see that the cost

10

Algorithm 1 Iterative scheme of DC programming

Set an initial estimation θ
0

repeat
Solve the convex problem

θ
t+1 = argmin

θ
J1(θ)−

〈

∇θJ2(θ
t), θ

〉

(12)

t = t + 1
until convergence of θ

J1(θ) − J2(θ) decreases after each iteration by summing the following two
inequalities resulting from (12) and from the concavity of −J2

J1(θ
t+1)− 〈∇θJ2(θ

t), θt+1〉 ≤ J1(θ
t)− 〈∇θJ2(θ

t), θt〉

−J2(θ
t+1) ≤ −J2(θ

t)− 〈∇θJ2(θ
t), θt+1 − θ

t〉.

The convergence of this algorithm to a local minimum is guaranteed [18, 29].
A similar procedure applies when the optimization problem comes with non-
convex constraints. A workaround proposed by Smola et al. [30] consists
in also expressing the DC decomposition of the constraints, linearizing the
objective function and the constraints at the current solution. Hence each
iteration simplified to a constrained convex problem.

4.2. Application to TSVM-MKL problem

4.2.1. Algorithm derivation

Problem (11) is non-convex because of the non-convexity of the Ramp
loss function. Its careful examination shows that constraints (11b - 11c)
are convex. Therefore, we solely need to find the DC decomposition of the
objective function (11a) and run algorithm 1 with the mentioned constraints.
Using the definition of the Ramp loss function Rs(z) = H1(z) − Hs(z), we
attain the following DC decomposition of (11a):

J1(θ) =
1

2

m
∑

k=1

ak
dk
‖fk‖

2
Hk

+ C

ℓ
∑

i=1

H1(yig(xi)) + C∗

ℓ+2u
∑

i=ℓ+1

H1(yig(xi)) (13)

J2(θ) = C∗
ℓ+2u
∑

i=ℓ+1

Hs(yig(xi))

11

Parameter vector θ comprises of fk (1 ≤ k ≤ m), bias term b and vector d.
Now, let find the dot product:

〈

θ, ∇θJ2(θ
t)
〉

= C∗
ℓ+2u
∑

i=ℓ+1

〈

θ, ∇θHs(yig
t(xi))

〉

where ∇θHs(yig
t(xi)) is the gradient taken at the current decision func-

tion gt(x). As J2(θ) is independent of d, it should suffice to calculate
〈θ,∇θHs(yg

t(x))〉 which will involve terms related to fk and the bias b. Re-
calling the definition (3b) of Hs(z) and using the reproducing property of
Hilbert space i.e. fk(x) = 〈fk, κk(x, ·)〉Hk

, we obtain the following relations
∇bHs(yg

t(x)) = νy and ∇fkHs(yg
t(x)) = νyκk(x, ·) where the scalar ν

represents the gradient of hinge loss ∂Hs(z) at z = ygt(x):

ν =

{

−1 if ygt(x) < s
0 otherwise

(14)

It is worth mentioning that hinge loss function is differentiable everywhere
except in z = s. To be consistent, we should consider the subgradient at that
point. However, following [24] we arbitrary set ν = 0 at z = s. Gathering all
informations, we get

〈

θ,∇θHs(yg
t(x))

〉

= νyb+ νy

m
∑

k=1

fk(x) = νyg(x)

〈

θ,∇θJ2(θ
t)
〉

= C∗

ℓ+2u
∑

i=ℓ+1

νiyig(xi).

With all these elements, the application of DC programming to TSVM-MKL
leads to algorithm 2. One can notice that this problem simply turns out
to solve iteratively a fully supervised multiple kernel SVM with additional
balancing constraint which does not harm the solution computation. So
we can benefit from any efficient off-the-shelf sparse MKL solver as those
presented in [17, 27].

4.2.2. Solving each iteration of TSVM-MKL

For completeness sake, we present in the sequel an adaptation of Sim-
pleMKL of [17] to handle convex problem (15). Natively, the approach is
iterative and can be summarized as follows. Assume the weights dk are

12

Algorithm 2 Iterative procedure to solve TSVM-MKL

Set an initial estimation d0, b0, f 0
k and t = 0

repeat
Calculate the terms νi, i = ℓ+ 1, . . . , ℓ+ 2u using (14).
Determine dt+1, bt+1, f t+1

k , k = 1, . . . , m solution of

min
fk,b,d≥0

J1(fk, b)− C∗
ℓ+2u
∑

i=ℓ+1

νiyig(xi) (15)

s.t. ‖d‖1 ≤ 1, and
ℓ+u
∑

i=ℓ+1

g(xi) =
1

ℓ

ℓ
∑

i=1

yi

with the expression of J1 given by (13)
until a convergence criterion is satisfied.

fixed, problem (15) turns to be a normal SVM. Let J̃(d) be the minimum.
As fk, k = 1, · · · , m and b explicitely depend on d, the coefficients dk are
therefore derived by solving the convex problem:

min
d≥0

J̃(d) s.t. ‖d‖1 (16)

The optimization can be achieved by a gradient method

d ← d− τ∇dJ̃(d) (17)

projected onto the positive orthant of the ℓ1-ball to ensure feasibility of the
solution. The new solution d is therefore plugged back into (15) which is
solved for fk and b. The procedure alternates between the calculation of d
and the computation of fk and b until a convergence criterion is met. In our
simulation, convergence is deemed reached when d does not evolve anymore.

To complete our description, it just remains to present the way (15) is
solved for fixed d. The corresponding lagrangian is:

L = J1(fk, b)− C∗
ℓ+2u
∑

i=ℓ+1

νiyig(xi)− α0

(

1

u

ℓ+u
∑

i=ℓ+1

g(xi)−
1

ℓ

ℓ
∑

i=1

yi

)

with α0 the Lagrange parameter. Using properties of convex functions, the

13

sub-gradient of the Hinge loss writes [31]:

∂H1(z)/∂z =

0 if z > 1
−1 if z < 1
−η̃ if z = 1 with 0 ≤ η̃ ≤ 1

Let η = −∂H1(z)/∂z a parameter in the range (0, 1). Therefore, the opti-
mality condition w.r.t to primal variable fk leads to:

ak
dk

fk − C

ℓ
∑

i=1

yiηiκk(xi, ·)− C∗

ℓ+2u
∑

i=ℓ+1

yi(ηi + νi)κk(xi, ·)−
α0

u

ℓ+2u
∑

i=ℓ+1

κk(xi, ·) = 0

from which we obtain:

fk(x) =
dk
ak

ℓ+2u
∑

i=0

(αiyi + C∗γi)κk(xi, x), ∀k = 1, · · · , m.

with the following notations and conventions:

• αi = Cηi, ∀ i = 1, · · · , ℓ. Due to the definition of η, we naturally have
the box constraint 0 ≤ αi ≤ C.

• αi = C∗ηi, ∀ i = ℓ + 1, · · · , ℓ + 2u. Similarly the associated box con-
straint is 0 ≤ αi ≤ C∗.

• y0 = 1 and κk(x0,x) =
1
u

∑ℓ+u
i=ℓ+1 κk(xi,x).

• γi = νiyi, ∀ i = 0, · · · , ℓ+ 2u with the convention γi = 0, ∀ i = 0, · · · , ℓ.

x0 is a virtual sample used to encode easily the balancing constraint as in
[24]. In the same manner, the optimality condition w.r.t. the bias term b
gives

∑ℓ+2u
i=0 (αiyi + C∗γi) = 0. Finally the dual of (15) is the QP problem

max
α

−
1

2

ℓ+2u
∑

i,j=0

(αiyi + C∗γi)(αjyj + C∗γj)κ(xi,xj) +
ℓ+2u
∑

i=1

αi +
α0

ℓ

ℓ
∑

i=1

yi

s.t.
ℓ+2u
∑

i=0

(αiyi + C∗γi) = 0, 0 ≤ αi ≤ C, ∀ i = 1, . . . , ℓ

0 ≤ αi ≤ C∗, ∀ i = ℓ+ 1, . . . , ℓ+ 2u

14

Algorithm 3 Complete algorithm to solve TSVM-MKL problem

Solve a fully supervised multiple kernel learning using the label data to
initialize f 0

k , b0 and d0k, k = 1, . . . , m
Set t = 0
repeat
Calculate the terms νi, i = 1, . . . , ℓ+ u using (14)
Determine dt+1, bt+1, f t+1

k , k = 1, . . . , m by running the following loop
repeat
Solve the dual problem for d fixed
Update d according to (17)

until Convergence of d or satisfaction of other convergence criterion
Set t = t + 1

until convergence of νi or other criterion satisfaction

where the kernel κ is simply κ(xi,xj) =
∑m

k=1
dk
ak
κk(xi,xj). This QP problem

involves ℓ + 2u+ 1 variables all box-constrained except α0. At convergence,
the objective value of the dual coincides with J̃(d). Hence the entries of the
gradient involved in (17) are easily obtained as

∇dk J̃ = −
1

2ak

ℓ+2u
∑

i,j=0

(αi + C∗γi)(αj + C∗γj)κk(xi,xj).

Finally, algorithm 3 recapitulates the main steps of our TSVM-MKL
solver. Although we have presented our solution of TSVM-MKL from the
angle embraced in [17], any other MKL approach straigthforwardly applies.
Hence, we emphasize that to gain in computation efficiency, the described
MKL solver can be advantageously replaced by any new MKL solvers.

4.2.3. Computational complexity

The proposed algorithm presents a certain computation burden we study
hereafter. As TSVM-MKL relies on multi-kernel framework of simpleMKL
[17] and TSVM [24], the overall complexity of the algorithm is tied to the
complexity of these methods.

For instance, when solving TSVM via CCCP approach, training amounts
to solving a series of single kernel SVM optimization problems with ℓ + 2u
variables. Hence it has a worst case complexity of O((ℓ+ 2u)3). However, a
few iterations are needed in practice to obtain convergence of TSVM. More-

15

over Collobert et al. [24] empirically found that such a CCCP-TSVM scheme
scales quadratically.

Our TSVM-MKL has a similar behavior but with a greater computation
demand. Indeed each iteration requires solving a multiple kernel problem
which results in calculation of several SVM problems with ℓ + 2u variables.
As for TSVM, a few iterations nI (in average 5-10 iterations in our empirical
evaluations) of DC outer loop are typically necessary to observe convergence
of our algorithm. Hence the complexity of proposed method can be approx-
imated as nI multiple of the complexity of a convex SVM-MKL method. In
comparison with TSVM, the increase in computational cost of our TSVM-
MKL is mostly due to multiple kernel problem solving. Nevertheless, TSVM-
MKL does not require a tedious search of kernel parameters as in TSVM or
Laplacian SVM but rather leverages different assumptions on the underlying
marginal distribution of the data.

5. Related work

In this section we review and highlight the connections of our TSVM-
MKL problem to other existing algorithms which may be classified from
different views. Mallapragada et al. [13] proposed SemiBoost, a boosting
framework to exploit both manifold and cluster assumption in training clas-
sification models. Similar to most boosting algorithms, SemiBoost iteratively
improves the classification accuracy by recruiting new labeled data. At each
iteration, it uses pairwise similarity measurements to guide the selection of
unlabeled samples, as well as for confidently assigning class labels to them.
The selected samples and the labeled data are used to train a new model.
The new classification model will be combined linearly with the existing clas-
sification models to make improved predictions.

Mutli-manifold framework [14] designs a “cluster-then-label”learning when
the data consists of multiple intersecting manifolds. It consists of three main
steps: (1) use the unlabeled data to form a small number of decision sets in
the ambient space; (2) estimate the target function within a particular deci-
sion set by a supervised learner; (3) predict a new test point by the target
function in the decision set it falls into. For each decision set, they perform
spectral clustering on the graph of labeled and unlabeled points, each result-
ing cluster represents a seperate manifold. Their method involved Hellinger-
distance-based graphs and size-constrained manifold clustering which induces
a highly complex model.

16

One existing method closely related to our algorithm relies on regulariza-
tion framework. Indeed, [15] proposed graph laplacian kernels selection by
reformulating problem (5) in the multiple kernel sense. However, the found
solution is restrictive as the combination of both assumptions is performed
in purely transductive way. Hence, it cannot be extended to handle the
out-of-sample cases as in our BCI application.

Another view of the problem is adaptive regularization for TSVM [16]
which learn different predictions issued from classifiers with different strengths
of cluster assumption are built. These predictions are linearly binded under
a manifold regularization. Although the method empirically proves perform-
ing, it suffers the same drawback as [15] because it is transductive in essence.

Compared with previous methods, our proposed TSVM multiple kernel
framework exhibits the following advantages: (1) TSVM-MKL is an inductive
model and can handle the out-of-sample case effectively. (2) The adaptive
regularization of [16] hierarchizes manifold and cluster assumptions while
our TSVM-MKL relies on base kernels and manifold kernels to implement
these two assumptions seperately. And thereby TSVM-MKL gains from the
flexibilty of multiple kernel learning, and profits the efficiency of new MKL
solvers. (3) When we discard all manifold kernels from the kernel pool,
this algorithm can be regarded as a pure cluster-assumption based method.
While for those problems that match the manifold assumption perfectly, we
can only keep manifold kernels in the kernels pool to enhance the effect of
manifold assumption. Compared with the algorithms proposed by [14, 13],
TSVM-MKL has a smaller computation complexity, and a larger flexibilty.

6. Experiments on benchmark data sets

To evaluate the effectiveness of our TSVM-MKL, we conduct an exten-
sive comparison with the single-assumption-based semi-supervised SVM al-
gorithms. TSVM [24] and Laplacian SVM (LapSVM) [11] are adopted as the
representative algorithms that based on cluster and manifold assumption re-
spectively. TSVM problem solved by DC programming involves the setting
of the kernel parameter σ, the regularization parameters C, C∗ (see Eq 6)
and the hyper-parameter s of the Ramp loss function. Besides the specifica-
tion of the kernels (base kernels and/or manifold kernels (8)), TSVM-MKL
also requires the specification of the same hyper-parameters. Laplacian SVM
requires the choice of γA, γI and the kernel parameter. For this algorithm, we
use authors’ [26] own implementation. The methods were evaluated in three

17

Table 1: Benchmark data sets used in our experiments. Labeled data number ℓ are for
transductive setting and inductive setting.

Data set dimensionality labeled ℓ total points n
G50c 50 50 550
Text 7511 50 1946
Page 3000 12 1051
Link 1840 12 1051

Pagelink 4840 12 1051

different ways: we first conducted experiments based on transductive and in-
ductive settings in order to compare our approch with TSVM and LapSVM
following the same experimental protocol as in [26]. Then, we extended the
empirical evaluation to a setup we will term semi-supervised learning cross
validation style. These settings are clarified and the observed results are
exposed in subsequent sections.

6.1. Evaluation under transductive and inductive settings

6.1.1. Experimental setting

As summarized in Table 1, five binary classification benchmark data
sets (G50c, Text, Page, Link, and Pagelink) were selected from [26]. Semi-
supervised learning can be either transductive or inductive. A transductive
learner only works on the labeled and unlabeled training data, and cannot
handle unseen data contrary to the inductive classifier. Hence we apply the
following setups:

• Transductive setting: in transductive setting, the training set com-
prises of n samples, ℓ of that are labeled. Performance of each algorithm
is evaluated by predicting the labels of n− ℓ unlabeled samples.

• Inductive setting: in the inductive setting, the training set comprises
of ℓ+ u samples (ℓ labeled as before, and u unlabeled) and the test set
comprises of n − ℓ − u samples. With the same implementation in
[26], we divide the remaining n − l samples into five equal folds. At
each time, one fold is selected as the unseen test set and the rest four
folds serve as unlabeled set (also as the validation set). We repeat
this procedure until all the five folds have been selected as the test

18

Table 2: Finally selected σ in the experiments

Data set Values Data set Values
G50c {2−2, 20, 22, 24, 26} Text {2 , 3, 4}
Page {2−2, 2−1, 20} Link {2−2, 2−1, 20}

Pagelink {2−2, 2−1, 20}

set. Algorithm is evaluated by the mean performance on predicting
the novel out-of-sample test examples.

In this section, we evaluate the performance of TSVM-MKL in both trans-
ductive setting and inductive setting to compare with the results reported
in [26, 24]. For this sake we use the same number of labeled samples as
described in Table 1 and the same splittings of the datasets into labeled and
unlabeled sets. The obtained results are reported in Tables 3 and 4.

Next the influence of the proportion of the labeled set size, that is ℓ/n, on
performances is analyzed on some of the datasets. We have considered the
respective proportions: 1%, 5%, 10% and 20%. The labeled and unlabeled
was generated accordingly and the simulations were carried over 10 runs.
The empirical evidences are illustrated on Figures 3 and 4.

In our experiments, we set C = C⋆, the values of C and s are selected by
grid search over [10 100 1000] and [0 : 0.2 : 0.6] respectively. Gaussian kernels
and euclidean nearest neighbor graphs with gaussian weights were used on
G50c and Text. Linear base kernel and cosine nearest neighbor graphs with
gaussian weights were used for the remaining data sets following [26]. Based
on the classification accuracy on unlabeled data, finally selected values for σ
in both transductive setting and inductive setting experiments are shown in
Table 2.

6.1.2. Experimental results and analysis

We first present the results when using the number of labeled samples as
shown in Tabe 1. Table 3 shows the mean results and the standard deviations
of involved algorithms on 10 runs in transductive setting. Table 4 reports the
mean results and the standard deviations of TSVM-MKL on 10 runs when
predicting the labels of unlabeled and test data in inductive setting.

Results of SVM and LapSVM on G50C and Text are taken from [26].
They learned a regular SVM on labeled data and predict the labels of unseen
testing data. We redo all the other experiments in the same experimental

19

Table 3: Transductive setting: misclassification rates on unlabeled data

Data set G50c Text Link Page Pagelink
SVM 9.7 18.9 26.7 20.8 14.2

LapSVM 5.4(0.6) 10.4(1.1) 14.9(8.8) 10.5(0.7) 6.3(0.6)
TSVM 5.7(1.6) 6.0(1.1) 11.6(2.9) 10.6(8.5) 8.6(7.3)

TSVM-MKL 4.4(0.7) 6.2(1.6) 10.0(6.4) 8.3(5.2) 5.6(5.8)

setting. Experiments of SVM are implemented in this way: train an SVM
on labeled set, and test it on unseen test set.

Table 4: Inductive setting: misclassification rates on unlabeled and test data

Data set G50c Text Link Page Pagelink
Algorithm Unlab Unlab Unlab Unlab Unlab

Test Test Test Test Test
SVM 9.7 20.9 24.8 23.8 25.1

9.7 20.9 24.8 23.8 25.1
LapSVM 4.9 9.9 21.2(21.4) 14.1(7.1) 12.8(8.4)

5.0 9.7 21.1(21.3) 15.5(6.1) 14.4(6.0)
TSVM 5.4(1.1) 6.5(1.1) 11.6(2.7) 11.5(8.3) 9.0(7.2)

6.1(1.3) 6.8(1.0) 11.2(2.8) 11.6(8.6) 8.9(7.0)
TSVM-MKL 4.5(5.0) 6.2(1.4) 9.6(6.0) 8.5(4.6) 5.6(5.7)

4.7(5.2) 6.4(1.5) 9.4(6.1) 9.0(4.9) 6.2(5.7)

From these results we can see that TSVM-MKL achieves the best solu-
tion in most cases. It indicates that the combination of cluster and manifold
assumption helps improving the classification performances. This improve-
ment is more prominent in inductive setting where the test data are unseen
by the algorithms. We can particularly remark the better performances of
TSVM and TSVM-MKL over LapSVM in Table 4. This is justified by the
fact that most of the data sets are text classification applications which are
well suited for cluster assumption. Embedding manifold kernels in TSVM
through multiple kernel learning boosts the results of TSVM and emphasizes
the utility of data geometry.

We have also investigated performances of TSVM-MKL, LapSVM and
TSVM with different sizes of labeled set. To simplify the presentation, we

20

1 2 3

0.1

0.2

0.3

0.4

0.5

m
is

cl
as

si
fic

at
io

n
ra

te

Column Number

(a) ℓ
n
= 1%

1 2 3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m
is

cl
as

si
fic

at
io

n
ra

te

Column Number

(b) ℓ
n
= 5%

1 2 3

0.04

0.05

0.06

0.07

0.08

0.09

m
is

cl
as

si
fic

at
io

n
ra

te

Column Number

(c) ℓ
n
= 10%

1 2 3

0.03

0.04

0.05

0.06

0.07

0.08

0.09

m
is

cl
as

si
fic

at
io

n
ra

te

Column Number

(d) ℓ
n
= 20%

Figure 3: Evaluation of TSVM-MKL, LapSVM and TSVM with different ratio of labeled
data ℓ

n
. Index of column number 1, 2 and 3 denote TSVM-MKL, LapSVM and TSVM on

data set G50C seperately.

solely report the results for the inductive setting where hold-out samples
are used to assess the effectiveness of each method. Figures 3 and 4 show
comparison results on data sets G50C and PAGE.

The following remarks can be made. Regarding G50C, the lack of suffi-
cient labeled data (1% of overall data set) involves a failure of TSVM-MKL
and LapSVM. This tends to illustrate that the geometrical information (man-
ifold kernels) was not fully exploited by both methods. In comparison TSVM
performs well. When one increases the number of labeled samples, TSVM-
MKL and LapSVM reduces the gap in performances with TSVM. It can
be observed that TSVM-MKL matches up with TSVM for ℓ/n = 5% and
ℓ/n = 20% and can be deemed superior to TSVM for a mid range of labeled
set size, that is ℓ/n = 10%. For PAGE, the results produced by TSVM-MKL
are more consistent were varying the proportions of labeled samples. As a
conclusion for this dataset, TSVM-MKL exhibits better performances than
LapSVM and leverages the manifold and cluster information to improve the
misclassification rates over TSVM.

21

1 2 3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

m
is

cl
as

si
fic

at
io

n
ra

te

Column Number

(a) ℓ
n
= 1%

1 2 3
0.04

0.06

0.08

0.1

0.12

0.14

0.16

m
is

cl
as

si
fic

at
io

n
ra

te

Column Number

(b) ℓ
n
= 5%

1 2 3

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

m
is

cl
as

si
fic

at
io

n
ra

te

Column Number

(c) ℓ
n
= 10%

1 2 3

0.04

0.05

0.06

0.07

0.08

0.09

0.1

m
is

cl
as

si
fic

at
io

n
ra

te

Column Number

(d) ℓ
n
= 20%

Figure 4: Results for different ratio of labeled data ℓ
n
on PAGE.

6.2. Evaluation under semi-supervised style cross validation setting

In this setting, the best achievable accuracy obtained by maximizing the
accuracy on test set is reported. Evaluation is implemented as follows: (a)
split the ℓ available labeled data into nF equal folds; (b) hold one fold as
test data, employ the remaining folds and the unlabeled data to train a semi-
supervised model; (c) repeat nF times and attain the averaged accuracy.
The three steps are repeated for different combinations of involved hyper-
parameters and is selected the model with the best averaged test error. Notice
that doing so, the test set does not act as a genuine hold-out samples set but
rather as validation set. The interest of this procedure resides in the fact
when one has a very few labeled samples, only these samples can be used to
guide model tuning.

To test our model under this setting, we divide the whole data set into
labeled set (ℓ = 30%n) and unlabeled set (u = 70%n) and we consider
nF = 3, hence the test set consists of 10% of the data. The results are
averaged over 10 replications and the best achievable test errors are presented
in Table 5.

22

Table 5: SSL-style cross validation setting: the best achievable accuracy.

Data set G50c Text Link Page Pagelink
LapSVM 5.4(1.2) 7.5(1.0) 6.7(1.9) 4.5(1.4) 3.2(1.1)
TSVM 5.7(1.5) 3.4(0.5) 5.6(1.8) 3.8(0.9) 2.8(1.0)
TSVM-MKL 5.8(2.7) 4.8(0.9) 5.5(1.3) 4.0(1.2) 2.7(0.7)

Clearly TSVM performs the best under this particular setting. TSVM-
MKL hardly attains the same level of performances as TSVM. In the cases
where better results are achieved by TSVM-MKL the difference with TSVM
is tiny. It seems that TSVM-MKL is more sensitive than TSVM to the size
of evaluation set (as here the test set can be viewed as validation set). When
model selection is performed over the unlabeled set, TSVM-MKL tends to
select better models as confirmed by the results of previous subsection. In-
deed, having more validation data allows TSVM-MKL to unravel and learn
the appropriate combination of kernels and permits to avoid overfitting (as
TSVM-MKL comes with potentially greater model complexity). Hence it can
be expected that more validation informations can alleviate the observed
limitation. Nevertheless, it is necessary to investigate datasets with more
training samples to confirm or invalidate this observation and intuition. Fi-
nally, it is reassuring that TSVM-MKL still consistently performs better than
Laplacian SVM.

7. Application in a BCI data analysis

In this section, we present two groups of experiments. In the first group,
we mainly demonstrate the validity of our proposed TSVM-MKL algorithm
in BCI data analysis. In the second one, we test feasibility of channel selection
with the proposed method. Semi-supervised learning in BCI aims to reduce
the calibration time of BCI system for the use of a subject.

7.1. Experimental data

This experiment deals with multi-class classification of EEG signals. We
use here the data sets from BCI Competition III (data set V). These data
sets contain EEGs recorded from 3 normal subjects during 4 non-feedback
sessions. The subjects performed 3 tasks: imagination of repetitive self-
paced right-hand movements, imagination of repetitive self-paced left-hand

23

Table 6: EEG data sets for classification with Semi-supervised algorithms.

Subject Train(Session0) Test(Session1) Test(Session2) Test(Session3)
A 438 436 434 446
B 434 434 432 434
C 436 428 428 430

movements and generation of words begining with the same random letter.
All the four sessions of a given subject were acquired on the same day, each
lasting 4 minutes with 5-10 minutes breaks between them, then switched
randomly to one of the other two tasks at the operator’s request, and after
another 15 seconds, switched to a new task again. The class labels were
changed with the task at the same time. EEG data are not splitted into
trials since the subjects are continuously performing all the mental tasks.
The raw EEG potentials were first spatially filtered by means of a surface
Laplacian. Then, in every 62.5 ms the power spectral density (PSD) in the
band 8-30 Hz was estimated over the last second of data with a frequency
resolution of 2 Hz for the eight centro-parietal channels C3, Cz, C4, CP1,
CP2, P3, Pz and P4 (see figure 6). We select the first 12 components for
each channel and attain 96 features for each sample.

Each PSD sample of the EEG data is normalized (ℓ2 normalization) to an
interval of [0, 1] [4]. Since the BCI system needs a response in every 0.5 s and
the EEG data are very noisy, we average the PSD data over 8 consecutive
samples. The number of examples used for training and testing sets are listed
in Table 6 (for simplicity, we denote the training session as Session 0).

7.2. Evaluation procedure

7.2.1. Model selection

Current model selection strategies in the application of BCI are always
implemented in the transductive setting: perform grid-search-based cross
validation on the training set, and then select the final hyperparameters ac-
cording to the performance on the unlabeled data [4, 5]. There are two
reasons showed that it is unsuitable to perform the model selection in this
way: (1) TSVM is an inductive learner in nature, performance on the un-
labeled set cannot demonstrate its generalization ability exactly. (2) Brain
activities change naturally over time, thus, the EEG data can be seen as from

24

different data distributions in some degree. Performance on the unlabeled
data could be far from that on the unseen test data.

In this paper, we propose to implement the model selection of semi-
supervised algorithms for BCIs in this way: divide the whole data into nF
equal folds, as the EEG data are chronological distribution, the data from
the first fold is selected as the labeled data. At each validation process, leave
one fold out to serve as the unseen test set for validation (to distinguish
from the real test set in the testing process, we denote it as “test-validation
set”), and the remaining folds serve as the unlabeled data. We first train a
TSVM-MKL classifier on the labeled and unlabeled data, and then evaluate
it on the test-validation set. Let Nunl be the number of unlabeled samples,
Ntv is the number of test-validation samples, Accunl is the accuracy on un-
labeled samples, and Acctv is the accuracy on the test-validation set. Final
hyperparameters are selected according to

Accunl
Nunl

+
Acctv
Ntv

. (18)

7.2.2. Testing strategy

To illustrate the change of EEG patterns in different sessions of each
subject, Figure 5 shows the feature vector values for the three mental tasks
of each subject in the training session and all the three testing sessions. These
features have been generated by averaging all PSD samples of a given mental
task. We can see that the EEG patterns differ in quite a few aspects from
subject to subject. And shift a lot from the training session to the test one
on each mental task. This spontaneous variability of brain signals between
sessions/subjects hinders correct online recognition with any classifier trained
with the data of training sessions.

To evaluate the performance of an algorithm fairly, we fix the testing
strategy as follows: training a classifier on the training set (in current ex-
periment, means that employing the data from Session 0); keep the hyper-
parameters that attained in the model selection procedure unchanged for all
the three testing sessions. The model of TSVM-MKL is updated session by
session. For Session 1, labeled set are fixed as the data from the first four
folds of Session 0, and the remaining one fold is selected as the unlabeled set.
For Session 2 and 3, we set labeled set as Session 0, and the previous testing
sessions serve as the unlabeled sets. All the experiments are implemented in
the inductive setting. Our strategy is identical with that of [4].

25

0 50 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
1st task

Feature Vector Dimension

F
ea

tu
re

 V
al

ue
s

Training
Test

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
2nd task

Feature Vector Dimension

F
ea

tu
re

 V
al

ue
s

Training
Test

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
3rd task

Feature Vector Dimension

F
ea

tu
re

 V
al

ue
s

Training
Test

(a) Subject A

0 50 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
1st task

Feature Vector Dimension

F
ea

tu
re

 V
al

ue
s

Training
Test

0 50 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
2nd task

Feature Vector Dimension

F
ea

tu
re

 V
al

ue
s

Training
Test

0 50 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
3rd task

Feature Vector Dimension

F
ea

tu
re

 V
al

ue
s

Training
Test

(b) Subject B

0 50 100
0

0.05

0.1

0.15

0.2

0.25
1st task

Feature Vector Dimension

F
ea

tu
re

 V
al

ue
s

Training
Test

0 50 100
0

0.05

0.1

0.15

0.2

0.25
2nd task

Feature Vector Dimension

F
ea

tu
re

 V
al

ue
s

Training
Test

0 50 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
3rd task

Feature Vector Dimension

F
ea

tu
re

 V
al

ue
s

Training
Test

(c) Subject C

Figure 5: Averaged PSD feature vector values for the three mental tasks on each subject
(1st task: imaginary left-hand movements; 2nd task: imagery right-hand movements; 3rd
task: generation of words). We select the first 12 components for each centro-parietal
channel and attain 96 features for each sample.

26

7.3. First experimental analysis: testing validity of TSVM-MKl for BCI

In our experiments, we adopt “one-against-all”scheme for the multi-class
problem. Following choices were made for TSVM-MKL: for the manifold
kernels, we fix p = 1 andN = 30 neighbors (see eq 8 and Laplacian definition)
unoptimized. For the base part, we adopt the heuristic uC∗ = ℓC and set
s = 0.1 according to the experience. The rest hyperparameters (C, σ, γ = γI

γA
)

are selected by a 5-fold cross validation. Grid searches are executed over
[1 10 100 500 1000], [0.1 0.32 1.0 3.2 10], and [1 10 100 1000] for C, σ, and
γ respectively. We adopt Gaussian kernel for the non-linear case. One base
kernel and one manifold kernel compose the kernel pool of TSVM-MKL.

For the experiments on TSVM, we adopt the heuristic uC∗ = ℓC and
set s = 0.1 according to the experience. Gaussian kernel was employed
for the nonlinear case. Model selection is implemented by grid search over
[1 10 100 1000] for C.

Finally, for LapSVM, involved hyperparameters include N (neighborhood
size for graph construction), γ, σL (used for adjacency matrix weights), p and
kernel parameter σ. We also fix p = 1 and N = 30 unoptimized. For the
linear case, model selection is executed by grid search over [1 10 100 1000]
and [0.01 0.1 1 10] over C and σL seperately. For the non-linear case, we add
the choices [0.1 1 10] for σ.

The experiments with classical SVM are also implemented by employing
all label information. In some degree, the results on SVM should be close
to the best result achievable. In the experiments of TSVM, LapSVM, and
SVM, we always employ the single-kernel case.

Table 7 shows a comparison of relevant algorithms for the three sub-
jects in linear (L) and non-linear case (N). From Table 7 we can see that,
compared with single-assumption-based semi-supervised algorithms, the pro-
posed TSVM-MKL can always achieve better classification accuracy in the
linear and non-linear cases respectively. These results showed the improve-
ments of TSVM-MKL in the BCI data analysis. And in many cases, the
results on TSVM-MKL are close to those of SVM that employed all label in-
formation, in this degree, TSVM-MKL could be a valuable choice for online
BCI applications.

7.4. TSVM-MKL in the application of channel selection

As different mental tasks induce the responses in different brain regions,
we believe that channel selection performed for each mental task shall lead

27

Table 7: A comparison of SVM, TSVM, LapSVM and TSVM-MKL for the three subjects
over three consecutive testing sessions. The chance level of classification accuracy is 33.3%
for three tasks. Symbol L denotes linear case, and N denotes non-linear case.

Subject Methods Session 1 Session 2 Session 3 Average
SVM (L) 66.3 71.7 77.4 71.8
SVM (N) 68.4 73.7 77.1 73.1
TSVM (L) 68.7 70.0 76.4 71.7

A TSVM (N) 67.8 72.1 76.2 72.0
LapSVM (L) 66.7 69.8 74.0 70.2
LapSVM (N) 62.8 71.7 75.8 70.1
TSVM-MKL (L) 65.6 74.4 76.7 72.2
TSVM-MKL (N) 64.3 75.3 78.0 72.5
SVM (L) 59.0 59.5 66.1 61.5
SVM (N) 59.0 59.7 67.0 61.9
TSVM (L) 52.5 56.0 59.5 56.0

B TSVM (N) 59.5 55.6 60.4 58.5
LapSVM (L) 53.5 57.2 58.8 56.5
LapSVM (N) 59.5 58.1 64.5 60.7
TSVM-MKL (L) 56.2 56.3 61.8 58.1
TSVM-MKL (N) 55.4 61.6 65.9 61.0
SVM (L) 49.3 45.0 49.1 48.8
SVM (N) 49.3 47.4 51.2 49.3
TSVM (L) 46.5 47.7 48.1 47.4

C TSVM (N) 46.7 43.7 47.7 46.0
LapSVM (L) 42.3 49.5 46.5 46.1
LapSVM (N) 46.3 43.2 47.6 45.7
TSVM-MKL (L) 46.3 49.8 48.6 48.3
TSVM-MKL (N) 48.8 47.2 49.8 48.6

to better performance. Hence, we embedded it into the learning process of
TSVM-MKL as follows:

• Define a subpool of kernels for each channel. To ensure that the classifer
has a smaller computation complexity, each subpool consists of one base
and one manifold kernel. Hence, for the total 8 channels, there will be
16 kernels involved in current experiments.

28

• Recall that dk acts as the selector of kernels. We constrain the kernels
corresponding to the same channel to share the same dk, i.e., for each

channel k, we set the kernel regularizer as ak1‖fk1‖
2+ak2‖fk2‖

2

dk
where fk1

refers to the basic kernel and fk2 to the manifold one.

• Implement Algorithm 2, automatical channel selection is excuted by
assigning different value of dk, larger values are given for those kernels
who have more contributions. When the weight of a channel is smaller
than 0.01, it will be discarded.

• Adopt “one-against-all”strategy for the multiclass classification task.
For each mental task, channel selection and learning process are finished
synchronously.

In this subsection, we only investigate the linear case to reduce the compu-
tation burden. Table 8 shows the performance of TSVM-MKL with/without
channel selction cases. The results showed its improvements with the pro-
vided strategy. In most cases, the performance with such channel selction
strategy can be improved obviously (except the 3rd session of subject C,
as subject C always performs not good enough, we can take it as an excep-
tion). Such improvements could be explained by figure 6, each channel makes
different contribution for different mental task. Take the channel “CP2”as
an example, it takes important role in the 2nd task, while gives the least
contribution in the 3rd task. This figure shows the necessity of performing
channel selection for each mental task, and gives the reason while TSVM-
MKL achieve better performance when employ less channels.

8. Conclusions

In this paper, we present a kernel design algorithm in semi-supervised
learning for BCI. The proposed TSVM-MKL algorithm combine the clus-
ter assumption and the manifold assumption in one learning framework by
employing multi-kernel learning. We first evaluate the proposed algorithm
on the benchmark data sets for semi-supervised learning, and then apply it
on the BCI data analysis. Experimental results showed the improvements
in classification accuracy compared with the single-assumption-based algo-
rithms. For the application of channel selection for BCI with TSVM-MKL,
experimental results showed its feasibility.

29

Fp1 Fpz Fp2
AF7

AF3 AFz AF4
AF8

F7 F5 F3 F1 Fz F2 F4 F6 F8

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

T7 C5 C3 C1 Cz C2 C4 C6 T8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

P7 P5 P3 P1 Pz P2 P4 P6 P8

PO7
PO3 POz PO4

PO8
O1 Oz O2

Fp1 Fpz Fp2
AF7

AF3 AFz AF4
AF8

F7 F5 F3 F1 Fz F2 F4 F6 F8

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

T7 C5 C3 C1 Cz C2 C4 C6 T8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

P7 P5 P3 P1 Pz P2 P4 P6 P8

PO7
PO3 POz PO4

PO8
O1 Oz O2

Fp1 Fpz Fp2
AF7

AF3 AFz AF4
AF8

F7 F5 F3 F1 Fz F2 F4 F6 F8

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

T7 C5 C3 C1 Cz C2 C4 C6 T8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

P7 P5 P3 P1 Pz P2 P4 P6 P8

PO7
PO3 POz PO4

PO8
O1 Oz O2

Fp1 Fpz Fp2
AF7

AF3 AFz AF4
AF8

F7 F5 F3 F1 Fz F2 F4 F6 F8

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

T7 C5 C3 C1 Cz C2 C4 C6 T8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

P7 P5 P3 P1 Pz P2 P4 P6 P8

PO7
PO3 POz PO4

PO8
O1 Oz O2

Fp1 Fpz Fp2
AF7

AF3 AFz AF4
AF8

F7 F5 F3 F1 Fz F2 F4 F6 F8

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

T7 C5 C3 C1 Cz C2 C4 C6 T8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

P7 P5 P3 P1 Pz P2 P4 P6 P8

PO7
PO3 POz PO4

PO8
O1 Oz O2

Fp1 Fpz Fp2
AF7

AF3 AFz AF4
AF8

F7 F5 F3 F1 Fz F2 F4 F6 F8

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

T7 C5 C3 C1 Cz C2 C4 C6 T8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

P7 P5 P3 P1 Pz P2 P4 P6 P8

PO7
PO3 POz PO4

PO8
O1 Oz O2

Fp1 Fpz Fp2
AF7

AF3 AFz AF4
AF8

F7 F5 F3 F1 Fz F2 F4 F6 F8

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

T7 C5 C3 C1 Cz C2 C4 C6 T8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

P7 P5 P3 P1 Pz P2 P4 P6 P8

PO7
PO3 POz PO4

PO8
O1 Oz O2

Fp1 Fpz Fp2
AF7

AF3 AFz AF4
AF8

F7 F5 F3 F1 Fz F2 F4 F6 F8

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

T7 C5 C3 C1 Cz C2 C4 C6 T8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

P7 P5 P3 P1 Pz P2 P4 P6 P8

PO7
PO3 POz PO4

PO8
O1 Oz O2

(a)

C3 Cz C4

CP1 CP2

P3 Pz P4

C3 Cz C4

CP1 CP2

P3 Pz P4

(b)

C3 Cz C4

CP1 CP2

P3 Pz P4

C3 Cz C4

CP1 CP2

P3 Pz P4

(c)

C3 Cz C4

CP1 CP2

P3 Pz P4

C3 Cz C4

CP1 CP2

P3 Pz P4

(d)

Figure 6: The distribution of involved channels. 6(a) The channels involved in the exper-
iments without channel selection. 6(b) The channels for the 1st task. Below: 6(d) The
channels for the 2nd task. 6(d) The channels for the 3rd task. For the experiments without
channel selection, as shown in the first figure, they utilize the information from all avail-
able channels equally. For our experiments with channel selection by TSVM-MKL, each
channel make different contributions to the learning task. We first sort the weights of all
involved channels in descending order. And then, the “importance-degree”for each channel
is obtained by its ranking. Here we use different color to denote the importance-degree:
changing the color from red to black with the changes from “the most important”to “the
less important”.

In the paper, we solely consider MKL in the framework of kernel selec-
tion as the constraints on coeffients dk can be seen as a ℓ1 constraint. In
forthcoming work, we are planning to explore non-sparse regularization that

30

Table 8: A comparison of TSVM-MKL with/without channel selection for the three sub-
jects over three consecutive test sessions. (LN) denotes the linear case with no channel
selection and (LC) denotes the linear case with channel selction. NumChan/task denotes
the number of involved channels per mental task.

Subject NumChan/task Session 1 Session 2 Session 3 Average
A (LN) 8-8-8 65.6 74.4 76.7 72.2
A (LC) 7-8-8 67.4 74.9 78.0 73.5
B (LN) 8-8-8 56.2 56.3 61.8 58.1
B (LC) 7-8-5 57.8 59.0 65.4 60.8
C (LN) 8-8-8 46.3 49.8 48.6 48.3
C (LC) 7-7-8 50.7 54.5 45.4 50.2

is a ℓp constraint with 1 < p <∞ as in fully supervised approach.

References

[1] J. Qin, Y. Li, W. Sun, A semisupervised support vector machines al-
gorithm for bci systems, Computational Intelligence and Neuroscience
(2007) 1687–5265.

[2] Y. Li, C. Guan, H. Li, Z. Chin, A self-training semi-supervised svm
algorithm and its application in an eeg-based brain computer interface
speller system, Pattern Recognition Letters 29 (2008) 1285–1294.

[3] R. C. Panicker, P. Sadasivan, Y. Sun, Adaptation in p300 brain-
computer interfaces: A two-classifier cotraining approach, IEEE Trans-
actions on Biomedical Engineering 57 (12) (2010) 2927–2935.

[4] X. Liao, D. Yao, C. Li, Transductive svm for reducing the training effort
in bci, Journal of Neural Engineering 4 (2007) 246–254.

[5] J. Zhong, X. Lei, D. Yao, Semi-supervised learning based on manifold in
bci, Journal of Electronics Science and Technology of China 7 (1) (2009)
22–26.

[6] V. Vapnik, A. Sterin, On structural risk minimization or overall risk in
a problem of pattern recognition, Automation and Remote Control 10
(1977) 1495–1503.

31

[7] O. Chapelle, A. Zien, Semi-supervised classification by low density sep-
aration, in: Tenth International Workshop on Artificial Intelligence and
Statistics (AISTATS 2005), Barbados, 2005, pp. 57–64.

[8] T. Joachims, Transductive inference for text classification using sup-
port vector machines, in: Proceedings of the Sixteenth International
Conference on Machine Learning (ICML 99), Bled, Slovenia, 1999, pp.
200–209.

[9] X. Zhu, Z. Ghahramani, Learning from labeled and unlabeled data
with label propagation, Tech. Rep. CMU-CALD-02-107, Carnegie Mel-
lon University (2002).

[10] T. Joachims, et al., Transductive learning via spectral graph partition-
ing, in: Proceedings of the 20th International Conference on Machine
Learning (ICML 2003), ICML, Washington, USA, 2003, pp. 290–297.

[11] M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: a geomet-
ric framework for learning from label and unlabeled examples, Journal
of Machine Learning Research 7 (2006) 2399–2434.

[12] O. Chapelle, V. Sindhwani, S. S. Keerthi, Optimization techniques for
semi-supervised support vector machines, Journal of Machine Learning
Research 9 (2008) 203–233.

[13] P. K. Mallapragada, R. Jin, A. K. Jain, Y. Liu, Semiboost: Boosting
for semi-supervised learning, IEEE Transaction on Pattern Analysis and
Machine Intelligence (PAMI) 31 (11) (2009) 2000–2014.

[14] A. Goldberg, X. Zhu, A. Singh, Z. Xu, R. Nowak, Multi-manifold semi-
supervised learning, in: Proceedings of the 12th International Confe-
rence on Artificial Intelligence and Statistics (AISTATS 2009), Florida,
USA, 2009.

[15] G. Dai, D. Yeung, Kernel selection for semi-supervised kernel machines,
in: Proceedings of the 24th International Conference on Machine Learn-
ing (ICML 2007), Corvalis, Oregon, USA, 2007, pp. 185–192.

[16] Z. Xu, R. Jin, J. Zhu, I. King, M. Lyu, Z. Yang, Adaptive regularization
for transductive support vector machine, in: Y. Bengio, D. Schuurmans,
J. Lafferty, C. K. I. Williams, A. Culotta (Eds.), Proceedings of the 23th

32

Annual Conference on Neural Information Processing Systems (NIPS
09), Vancouver, Canada, 2009, pp. 2125–2133.

[17] A. Rakotomamonjy, F. Bach, S. Canu, Y. Grandvalet, Simplemkl, Jour-
nal of Machine Learning Research 9 (2008) 2491–2521.

[18] P. D. Tao, L. T. H. An, Dc optimization algorithms for solving the trust
region subproblem, SIAM Journal of Optimization 8 (2) (1998) 476–505.

[19] S. Michael, L. T. Navin, H. Thilo, B. Martin, H. N. Jeremy, B. Niels,
R. Wolfgang, S. Bernhard, Robust eeg channel selection across subjects
for brain computer interfaces, EURASIP Journal on Applied Signal Pro-
cessing 2005 (19) (2005) 3103–3112.

[20] K. P. Bennett, A. Demiriz, Semi-supervised support vector machines, in:
Advances in Neural Information Processing Systems, MIT Press, 1998,
pp. 368–374.

[21] M. Seeger, Learning with labeled and unlabeled data, Tech. rep., Insti-
tute for ANC, Edinburgh, UK (2000).
URL http://lapmal.epfl.ch/papers/review.pdf

[22] V. Sindhwani, S. S. Keerthi, O. Chapelle, Deterministic annealing for
semi-supervised kernel machines, in: International Conference on Ma-
chine Learning, 2006, pp. 841–848. doi:10.1145/1143844.1143950.

[23] J. Wang, X. Shen, W. Pan, On efficient large margin semisupervised
learning: Method and theory, Journal of Machine Learning Research 10
(2009) 719–742. doi:10.1145/1577069.1577094.

[24] R. Collobert, F. Sinz, J. Weston, L. Bottou, Large scale transductive
svms, Journal of Machine Learning Research 7 (2006) 1687–1712.

[25] B. Zhao, F. Wang, C. Zhang, Cuts3vm: a fast semi-supervised svm
algorithm, in: Proceeding of the 14th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, KDD ’08, ACM, New
York, NY, USA, 2008, pp. 830–838.

[26] V. Sindhwani, P. Niyogi, M. Belkin, Beyond the point cloud: from trans-
ductive to semi-supervised learning, in: Proceedings of the 22nd Inter-
national Conference on Machine Learning (ICML 2005), ACM Press,
2005, pp. 824–831.

33

http://lapmal.epfl.ch/papers/review.pdf
http://lapmal.epfl.ch/papers/review.pdf
http://dx.doi.org/10.1145/1143844.1143950
http://dx.doi.org/10.1145/1577069.1577094

[27] Z. Xu, R. Jin, H. Yang, I. King, M. Lyu, Simple and efficient multiple
kernel learning by group lasso, in: Proceedings of the 27th International
Conference on Machine Learning (ICML 2010), Haifa, Israel, 2010, pp.
1175–1182.

[28] M. Kloft, U. Brefeld, S. Sonnenburg, A. Zien, Lp-norm multiple kernel
learning, Journal of Machine Learning Research 12 (2011) 953–997.

[29] A. L. Yuille, A. Rangarajan, The concave-convexe procedure, Neural
Computation 15 (4) (2003) 915–936.

[30] A. J. Smola, S. Vishwanathan, T. Hofmann, Kernel methods for missing
variables, in: In Proceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics, 2005, pp. 325–332.

[31] R. Rockafellar, Convex Analysis, Princeton University Press, 1996.

34

	Introduction
	Semi-supervised SVMs
	Problem setting: preliminaries
	TSVM
	Combinatorial methods
	Continuous methods

	Laplacian SVM

	Multiple kernel learning for TSVM
	Solving the multiple kernel TSVM problem
	Principle of DC programming
	Application to TSVM-MKL problem
	Algorithm derivation
	Solving each iteration of TSVM-MKL
	Computational complexity

	Related work
	Experiments on benchmark data sets
	Evaluation under transductive and inductive settings
	Experimental setting
	Experimental results and analysis

	Evaluation under semi-supervised style cross validation setting

	Application in a BCI data analysis
	Experimental data
	Evaluation procedure
	Model selection
	Testing strategy

	First experimental analysis: testing validity of TSVM-MKl for BCI
	TSVM-MKL in the application of channel selection

	Conclusions

